Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Peak amplitude of the normalized powerspectrum of the electromyogram of theuterus in the low frequency band is aneffective predictor of premature birth
ID
Pirnar, Žiga
(
Avtor
),
ID
Jager, Franc
(
Avtor
),
ID
Geršak, Ksenija
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(2,45 MB)
MD5: D1105C3E484426D0923E4BE5CE01A241
URL - Izvorni URL, za dostop obiščite
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308797
Galerija slik
Izvleček
The current trends in the development of methods for non-invasive prediction of premature birth based on the electromyogram of the uterus, i.e., electrohysterogram (EHG), suggest an ever-increasing use of large number of features, complex models, and deep learning approaches. These “black-box” approaches rarely provide insights into the underlying physiological mechanisms and are not easily explainable, which may prevent their use in clinical practice. Alternatively, simple methods using meaningful features, preferably using a single feature (biomarker), are highly desirable for assessing the danger of premature birth. To identify suitable biomarker candidates, we performed feature selection using the stabilized sequential-forward feature-selection method employing learning and validation sets, and using multiple standard classifiers and multiple sets of the most widely used features derived from EHG signals. The most promising single feature to classify between premature EHG records and EHG records of all other term delivery modes evaluated on the test sets appears to be Peak Amplitude of the normalized power spectrum (PA) of the EHG signal in the low frequency band (0.125-0.575 Hz) which closely matches the known Fast Wave Low (FWL) frequency band. For classification of EHG records of the publicly available TPEHG DB, TPEHGT DS, and ICEHG DS databases, using the Partition-Synthesis evaluation technique, the proposed single feature, PA, achieved Classification Accuracy (CA) of 76.5% (AUC of 0.81). In combination with the second most promising feature, Median Frequency (MF) of the power spectrum in the frequency band above 1.0 Hz, which relates to the maternal resting heart rate, CA increased to 78.0% (AUC of 0.86). The developed method in this study for the prediction of premature birth outperforms single-feature and many multi-feature methods based on the EHG, and existing non-invasive chemical and molecular biomarkers. The developed method is fully automatic, simple, and the two proposed features are explainable.
Jezik:
Angleški jezik
Ključne besede:
preterm birth
,
pregnancy
,
electromyogram of the uterus
,
biomarkers
,
signal processing
,
power spectrum
,
deep learning
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
MF - Medicinska fakulteta
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2024
Št. strani:
38 str.
Številčenje:
Vol. 19, iss. 9, art. e0308797
PID:
20.500.12556/RUL-162193
UDK:
004.85:618.39
ISSN pri članku:
1932-6203
DOI:
10.1371/journal.pone.0308797
COBISS.SI-ID:
208113411
Datum objave v RUL:
19.09.2024
Število ogledov:
173
Število prenosov:
192
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
PloS one
Založnik:
PLOS
ISSN:
1932-6203
COBISS.SI-ID:
2005896
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
prezgodnji porod
,
nosečnost
,
elektromiogram maternice
,
biomarkerji
,
procesiranje signalov
,
močnostni spekter
,
globoko učenje
Projekti
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P3-0124
Naslov:
Metabolni in prirojeni dejavniki reproduktivnega zdravja, porod III
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj