izpis_h1_title_alt

Razvoj inteligentnega agenta za igro z uporabo emulatorja PyBoy
ID Herksel Japelj, Samo (Author), ID Klemenc, Bojan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,28 MB)
MD5: 7077EF8EBE1D8B53EB62053A63BAEB50

Abstract
Diplomsko delo obravnava razvoj inteligentnega agenta, ki se bo sposoben učiti in igrati izbrano igro z uporabo strojnega učenja. Problem se nanaša na ustvarjanje sistema, ki se lahko samostojno uči in izboljšuje svoje zmogljivosti pri igranju igre. Za rešitev tega problema je uporabljen pristop spodbujevalnega učenja in nevronskih mrež, kjer agent skozi poskuse in napake pridobiva izkušnje in izboljšuje svojo strategijo igranja. Najpomembnejši rezultat tega dela je uspešen razvoj agenta, ki lahko konkurenčno igra izbrano igro in se prilagaja novim situacijam. Stremimo k temu, da bo končen izdelek ne le funkcionalen, temveč tudi koristen drugim, ki želijo pristopiti k izdelavi svojega agenta.

Language:Slovenian
Keywords:umetna inteligenca, strojno učenje, igre, q-učenje, PyBoy, spodbujevalno učenje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-161479 This link opens in a new window
COBISS.SI-ID:212242691 This link opens in a new window
Publication date in RUL:11.09.2024
Views:114
Downloads:16
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Development of an Intelligent Game Agent Using the PyBoy Emulator
Abstract:
The thesis focuses on developing an intelligent agent capable of learning and playing a specific game using machine learning techniques. The problem addressed involves creating a system that can autonomously learn and enhance its performance in gameplay. The solution approach utilizes reinforcement learning and neural networks, where the agent acquires experience and improves its gameplay strategy through trial and error. The most significant outcome of this work is the successful development of an agent that can competitively play the chosen game and adapt to new situations. The hope is that the final product will not only be functional but also useful to others who wish to approach the creation of their own agent.

Keywords:artificial intelligence, machine learning, games, Q-learning, PyBoy, reinforcement learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back