Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Razvoj inteligentnega agenta za igro z uporabo emulatorja PyBoy
ID
Herksel Japelj, Samo
(
Author
),
ID
Klemenc, Bojan
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(1,28 MB)
MD5: 7077EF8EBE1D8B53EB62053A63BAEB50
Image galllery
Abstract
Diplomsko delo obravnava razvoj inteligentnega agenta, ki se bo sposoben učiti in igrati izbrano igro z uporabo strojnega učenja. Problem se nanaša na ustvarjanje sistema, ki se lahko samostojno uči in izboljšuje svoje zmogljivosti pri igranju igre. Za rešitev tega problema je uporabljen pristop spodbujevalnega učenja in nevronskih mrež, kjer agent skozi poskuse in napake pridobiva izkušnje in izboljšuje svojo strategijo igranja. Najpomembnejši rezultat tega dela je uspešen razvoj agenta, ki lahko konkurenčno igra izbrano igro in se prilagaja novim situacijam. Stremimo k temu, da bo končen izdelek ne le funkcionalen, temveč tudi koristen drugim, ki želijo pristopiti k izdelavi svojega agenta.
Language:
Slovenian
Keywords:
umetna inteligenca
,
strojno učenje
,
igre
,
q-učenje
,
PyBoy
,
spodbujevalno učenje
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2024
PID:
20.500.12556/RUL-161479
COBISS.SI-ID:
212242691
Publication date in RUL:
11.09.2024
Views:
117
Downloads:
16
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Development of an Intelligent Game Agent Using the PyBoy Emulator
Abstract:
The thesis focuses on developing an intelligent agent capable of learning and playing a specific game using machine learning techniques. The problem addressed involves creating a system that can autonomously learn and enhance its performance in gameplay. The solution approach utilizes reinforcement learning and neural networks, where the agent acquires experience and improves its gameplay strategy through trial and error. The most significant outcome of this work is the successful development of an agent that can competitively play the chosen game and adapt to new situations. The hope is that the final product will not only be functional but also useful to others who wish to approach the creation of their own agent.
Keywords:
artificial intelligence
,
machine learning
,
games
,
Q-learning
,
PyBoy
,
reinforcement learning
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back