izpis_h1_title_alt

Primerjava metod za ocenjevanje polja sevanja
ID Peršak, Vid (Author), ID Čehovin Zajc, Luka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (28,14 MB)
MD5: 832A76E6FC3370A0E7275E375923EB2E

Abstract
Problem digitalnega opisa 3D sveta obstaja že od začetkov področja računalniške grafike. Večina pristopov temelji na rekonstrukciji sveta iz množice fotografij iste scene. Najnovejše metode temeljijo na globokem učenju, ki omogoča neposredno ocenjevanje polja sevanja. Nadaljnji razvoj metod izboljšuje hitrost, natančnost in dostopnost. Cilj diplomske naloge je pregled področja ter primerjava izbranih metod za ocenjevanje polja sevanja. V eksperimentalni analizi ovrednotimo kvaliteto metod, njihovo odvisnost od ločljivosti in števila vhodnih slik ter njihove potrebe po računskih virih.

Language:Slovenian
Keywords:Globoko učenje, Nevronske mreže, 3D rekonstrukcija, NeRF, Gaussovo Packanje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-160439 This link opens in a new window
COBISS.SI-ID:208519939 This link opens in a new window
Publication date in RUL:28.08.2024
Views:212
Downloads:63
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparison of radiance field estimation methods
Abstract:
The problem of digitally describing a 3D world has existed since the beginnings of computer graphics. Most approaches are based on the reconstruction of a world from a set of photographs of the same scene. The latest methods are based on deep learning, which allows for direct estimation of radiance fields. The subsequent development of these methods increases speed, accuracy and accessibility. The goal of this thesis is to review the field and to compare the chosen methods for radiance field estimation. In the experimental analysis, we evaluate the quality of the methods, their dependence on resolution, the number of input images and their computational resource requirements.

Keywords:Deep learning, Neural networks, 3D reconstruction, NeRF, Gaussian Splatting

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back