Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Primerjava metod za ocenjevanje polja sevanja
ID
Peršak, Vid
(
Author
),
ID
Čehovin Zajc, Luka
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(28,14 MB)
MD5: 832A76E6FC3370A0E7275E375923EB2E
Image galllery
Abstract
Problem digitalnega opisa 3D sveta obstaja že od začetkov področja računalniške grafike. Večina pristopov temelji na rekonstrukciji sveta iz množice fotografij iste scene. Najnovejše metode temeljijo na globokem učenju, ki omogoča neposredno ocenjevanje polja sevanja. Nadaljnji razvoj metod izboljšuje hitrost, natančnost in dostopnost. Cilj diplomske naloge je pregled področja ter primerjava izbranih metod za ocenjevanje polja sevanja. V eksperimentalni analizi ovrednotimo kvaliteto metod, njihovo odvisnost od ločljivosti in števila vhodnih slik ter njihove potrebe po računskih virih.
Language:
Slovenian
Keywords:
Globoko učenje
,
Nevronske mreže
,
3D rekonstrukcija
,
NeRF
,
Gaussovo Packanje
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2024
PID:
20.500.12556/RUL-160439
COBISS.SI-ID:
208519939
Publication date in RUL:
28.08.2024
Views:
335
Downloads:
80
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
PERŠAK, Vid, 2024,
Primerjava metod za ocenjevanje polja sevanja
[online]. Bachelor’s thesis. [Accessed 5 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=160439
Copy citation
Share:
Secondary language
Language:
English
Title:
Comparison of radiance field estimation methods
Abstract:
The problem of digitally describing a 3D world has existed since the beginnings of computer graphics. Most approaches are based on the reconstruction of a world from a set of photographs of the same scene. The latest methods are based on deep learning, which allows for direct estimation of radiance fields. The subsequent development of these methods increases speed, accuracy and accessibility. The goal of this thesis is to review the field and to compare the chosen methods for radiance field estimation. In the experimental analysis, we evaluate the quality of the methods, their dependence on resolution, the number of input images and their computational resource requirements.
Keywords:
Deep learning
,
Neural networks
,
3D reconstruction
,
NeRF
,
Gaussian Splatting
Similar documents
Similar works from RUL:
ǂThe ǂattitude of Slovene consumers towards mobility choice - development of alternative mobility and its effect on car ownership
Analiza informacijskega sistema izbranega podjetja
Management časa in kakovosti projektov razvoja programske opreme
Bassov model privzemanja UMTS
Endogenous economic mechanisms of uneven development
Similar works from other Slovenian collections:
Managing transfer to virtual business design
THE IMPACT OF THE ART TECHNIQUES ON THE CHOICE OF COLOUR BY PRESCHOOL CHILD
Choice of a suicide method
ǂThe ǂinfluence of early childhood experiences with parents on the choice of a parent
Back