izpis_h1_title_alt

Raziskovanje odvisnosti med pojavnostjo dihalnih obolenj in onesnaženostjo zraka v Sloveniji
ID Žitek, Tilen (Avtor), ID Faganeli Pucer, Jana (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (981,43 KB)
MD5: BB9406D1D565053DC3C6B65080948502

Izvleček
Znano je, da vreme in onesnaženost zraka vplivata na pojav dihalnih bolezni. V tej diplomski nalogi smo zgradili modele strojnega učenja, ki na podlagi meteoroloških podatkov in podatkov onesnaženosti zraka napovedujejo število diagnoz dihalnih bolezni v Sloveniji. Modelirali smo mesečne podatke, razvrščene po času, ter razvili algoritem za napovedovanje z drsečim oknom. Izkazalo se je, da so rezultati napovedovanja z drsečim oknom boljši od klasičnega načina napovedovanja. Cilj naloge je bil oceniti, kolikšen vpliv ima onesnaženost zraka (količina PM10 in NO2) na število diagnoz dihalnih bolezni. To smo naredili tako, da smo primerjali modele, naučene samo na meteoroloških podatkih, z modeli, katerim smo dodali še podatke o onesnaženosti zraka. Ugotovili smo, da onesnaženost zraka sicer ima vpliv, vendar manjšega kot meteorološki podatki. Na koncu smo z metodo SHAP razložili naše modele ter rezultate analize podprli in povezali z raznimi članki. Predvidevamo, da bi bili modeli še boljši, če bi modelirali dnevne podatke, imeli podatke za več dihalnih bolezni ter za daljše časovno obdobje. Naše modele bi v prihodnosti lahko razvili v opozorilne sisteme.

Jezik:Slovenski jezik
Ključne besede:strojno učenje, onesnaženost zraka, dihalne bolezni
Vrsta gradiva:Diplomsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2024
PID:20.500.12556/RUL-159724 Povezava se odpre v novem oknu
COBISS.SI-ID:202398979 Povezava se odpre v novem oknu
Datum objave v RUL:19.07.2024
Število ogledov:290
Število prenosov:72
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Exploring the relationship between occurrence of respiratory diseases and air pollution in Slovenia
Izvleček:
Weather and air pollution are known to affect the occurrence of respiratory diseases. In this thesis, we built machine learning models that predict the number of respiratory disease diagnoses in Slovenia based on meteorological data and air pollution data. We modeled monthly data sorted by time and developed a sliding window forecasting algorithm. The sliding window forecasting results are shown to be better than the classical forecasting method. The aim of the task was to assess the impact of air pollution (amount of PM10 and NO2) on the number of diagnoses of respiratory diseases. We did this by comparing models trained only on meteorological data with models to which we added air pollution data. We found that air pollution does have an impact, but it is smaller than meteorological data. In the end, we explained our models using the SHAP method, and the results of the analysis were supported and linked to various articles. We assume that the models would be even better if they modeled daily data, had data for several respiratory diseases, and for a longer period of time. Our models could be developed into warning systems in the future.

Ključne besede:machine learning, air pollution, respiratory diseases

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj