izpis_h1_title_alt

Automatic segmentation and alignment of uterine shapes from 3D ultrasound data
ID Boneš, Eva (Avtor), ID Gergolet, Marco (Avtor), ID Bohak, Ciril (Avtor), ID Lesar, Žiga (Avtor), ID Marolt, Matija (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (2,27 MB)
MD5: DA70441FADD509122C07C0CE83E122A2
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0010482524008795 Povezava se odpre v novem oknu

Izvleček
Background: The uterus is the most important organ in the female reproductive system. Its shape plays a critical role in fertility and pregnancy outcomes. Advances in medical imaging, such as 3D ultrasound, have significantly improved the exploration of the female genital tract, thereby enhancing gynecological healthcare. Despite well-documented data for organs like the liver and heart, large-scale studies on the uterus are lacking. Existing classifications, such as VCUAM and ESHRE/ESGE, provide different definitions for normal uterine shapes but are not based on real-world measurements. Moreover, the lack of comprehensive datasets significantly hinders research in this area. Our research, part of the larger NURSE study, aims to fill this gap by establishing the shape of a normal uterus using real-world 3D vaginal ultrasound scans. This will facilitate research into uterine shape abnormalities associated with infertility and recurrent miscarriages. Methods: We developed an automated system for the segmentation and alignment of uterine shapes from 3D ultrasound data, which consists of two steps: automatic segmentation of the uteri in 3D ultrasound scans using deep learning techniques, and alignment of the resulting shapes with standard geometrical approaches, enabling the extraction of the normal shape for future analysis. The system was trained and validated on a comprehensive dataset of 3D ultrasound images from multiple medical centers. Its performance was evaluated by comparing the automated results with manual annotations provided by expert clinicians. Results: The presented approach demonstrated high accuracy in segmenting and aligning uterine shapes from 3D ultrasound data. The segmentation achieved an average Dice similarity coefficient (DSC) of 0.90. Our method for aligning uterine shapes showed minimal translation and rotation errors compared to traditional methods, with the preliminary average shape exhibiting characteristics consistent with expert findings of a normal uterus. Conclusion: We have presented an approach to automatically segment and align uterine shapes from 3D ultrasound data. We trained a deep learning nnU-Net model that achieved high accuracy and proposed an alignment method using a combination of standard geometrical techniques. Additionally, we have created a publicly available dataset of 3D transvaginal ultrasound volumes with manual annotations of uterine cavities to support further research and development in this field. The dataset and the trained models are available at https://github.com/UL-FRI-LGM/UterUS.

Jezik:Angleški jezik
Ključne besede:uterus segmentation, volumetric ultrasound, 3D alignment
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
MF - Medicinska fakulteta
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:13 str.
Številčenje:Vol. 178, art. 108794
PID:20.500.12556/RUL-159208 Povezava se odpre v novem oknu
UDK:004.451.353:612.627
ISSN pri članku:0010-4825
DOI:10.1016/j.compbiomed.2024.108794 Povezava se odpre v novem oknu
COBISS.SI-ID:200067331 Povezava se odpre v novem oknu
Datum objave v RUL:03.07.2024
Število ogledov:403
Število prenosov:76
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Computers in biology and medicine
Skrajšan naslov:Comput. biol. med.
Založnik:Elsevier
ISSN:0010-4825
COBISS.SI-ID:189801 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:segmentacija maternice, volumetrični ultrazvok, 3D poravnava

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj