izpis_h1_title_alt

Relaxations and exact solutions to Quantum Max Cut via the algebraic structure of swap operators
ID Bene Watts, Adam (Avtor), ID Chowdhury, Anirban (Avtor), ID Epperly, Aidan (Avtor), ID Helton, J. William (Avtor), ID Klep, Igor (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,50 MB)
MD5: B1598A9B5DCC4E237943C0EC80848C9D
URLURL - Izvorni URL, za dostop obiščite https://quantum-journal.org/papers/q-2024-05-22-1352/# Povezava se odpre v novem oknu

Izvleček
The Quantum Max Cut (QMC) problem has emerged as a test-problem for designing approximation algorithms for local Hamiltonian problems. In this paper we attack this problem using the algebraic structure of QMC, in particular the relationship between the quantum max cut Hamiltonian and the representation theory of the symmetric group. The first major contribution of this paper is an extension of non-commutative Sum of Squares (ncSoS) optimization techniques to give a new hierarchy of relaxations to Quantum Max Cut. The hierarchy we present is based on optimizations over polynomials in the qubit swap operators. This is in contrast to the "standard" quantum Lasserre Hierarchy, which is based on polynomials expressed in terms of the Pauli matrices. To prove correctness of this hierarchy, we exploit a finite presentation of the algebra generated by the qubit swap operators. This presentation allows for the use of computer algebraic techniques to manipulate and simplify polynomials written in terms of the swap operators, and may be of independent interest. Surprisingly, we find that level-2 of this new hierarchy is numerically exact (up to tolerance $10^{-7}$) on all QMC instances with uniform edge weights on graphs with at most 8 vertices. The second major contribution of this paper is a polynomial-time algorithm that computes (in exact arithmetic) the maximum eigenvalue of the QMC Hamiltonian for certain graphs, including graphs that can be "decomposed" as a signed combination of cliques. A special case of the latter are complete bipartite graphs with uniform edge-weights, for which exact solutions are known from the work of Lieb and Mattis. Our methods, which use representation theory of the symmetric group, can be seen as a generalization of the Lieb-Mattis result.

Jezik:Angleški jezik
Ključne besede:Quantum Max Cut, swap operators, noncommutative polynomials, symmetric group, Gröbner bases
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FMF - Fakulteta za matematiko in fiziko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Datum objave:01.01.2024
Leto izida:2024
Št. strani:88 str.
Številčenje:Vol. 8, [article no.] 1352
PID:20.500.12556/RUL-158307 Povezava se odpre v novem oknu
UDK:512
ISSN pri članku:2521-327X
DOI:10.22331/q-2024-05-22-1352 Povezava se odpre v novem oknu
COBISS.SI-ID:197706499 Povezava se odpre v novem oknu
Datum objave v RUL:04.06.2024
Število ogledov:251
Število prenosov:18
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Quantum
Skrajšan naslov:Quantum
Založnik:Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
ISSN:2521-327X
COBISS.SI-ID:526900761 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:Quantum Max Cut, Swap operatorji, nekomutativni polinomi, simetrična grupa, Gröbnerjeve baze

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P1-0222
Naslov:Algebra, teorija operatorjev in finančna matematika

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J1-50002
Naslov:Realna algebraična geometrija v matričnih spremenljivkah

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J1-2453
Naslov:Matrično konveksne množice in realna algebraična geometrija

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:N1-0217
Naslov:Nekomutativna realna algebraična geometrija s sledjo

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J1-3004
Naslov:Hkratna podobnost matrik

Financer:EC - European Commission
Številka projekta:101017733
Naslov:QuantERA II ERA-NET Cofund in Quantum Technologies
Akronim:QuantERA II

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Natural Sciences and Engineering Research Council of Canada
Številka projekta:RGPIN-2019-04198

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj