Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Improving the operational forecasts of outdoor Universal Thermal Climate Index with post-processing
ID
Kuzmanović, Danijela
(
Avtor
),
ID
Banko, Jana
(
Avtor
),
ID
Skok, Gregor
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(2,07 MB)
MD5: F415C746E900CBF7812D66FA6F23044D
URL - Izvorni URL, za dostop obiščite
https://link.springer.com/article/10.1007/s00484-024-02640-6
Galerija slik
Izvleček
The Universal Thermal Climate Index (UTCI) is a thermal comfort index that describes how the human body experiences ambient conditions. It has units of temperature and considers physiological aspects of the human body. It takes into account the effect of air temperature, humidity, wind, radiation, and clothes. It is increasingly used in many countries as a measure of thermal comfort for outdoor conditions, and its value is calculated as part of the operational meteorological forecast. At the same time, forecasts of outdoor UTCI tend to have a relatively large error caused by the error of meteorological forecasts. In Slovenia, there is a relatively dense network of meteorological stations. Crucially, at these stations, global solar radiation measurements are performed continuously, which makes estimating the actual value of the UTCI more accurate compared to the situation where no radiation measurements are available. We used seven years of measurements in hourly resolution from 42 stations to first verify the operational UTCI forecast for the first forecast day and, secondly, to try to improve the forecast via post-processing. We used two machine-learning methods, linear regression, and neural networks. Both methods have successfully reduced the error in the operational UTCI forecasts. Both methods reduced the daily mean error from about 2.6°C to almost zero, while the daily mean absolute error decreased from 5°C to 3°C for the neural network and 3.5°C for linear regression. Both methods, especially the neural network, also substantially reduced the dependence of the error on the time of the day.
Jezik:
Angleški jezik
Ključne besede:
climatology
,
Universal Thermal Climate Index
,
thermal comfort
,
verification
,
UTCI forecasting
,
post-processing
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FMF - Fakulteta za matematiko in fiziko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2024
Št. strani:
Str. 965–977
Številčenje:
Vol. 68, iss. 5
PID:
20.500.12556/RUL-156150
UDK:
551.58
ISSN pri članku:
0020-7128
DOI:
10.1007/s00484-024-02640-6
COBISS.SI-ID:
187754499
Datum objave v RUL:
10.05.2024
Število ogledov:
360
Število prenosov:
201
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
International journal of biometeorology
Skrajšan naslov:
Int. j. biometeorol.
Založnik:
Springer Nature, International Society of Biometeorology
ISSN:
0020-7128
COBISS.SI-ID:
25638400
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
klimatologija
,
univerzalni toplotni klimatski indeks
,
termalni indeks
,
verifikacija
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P1-0188
Naslov:
Astrofizika in fizika atmosfere
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj