izpis_h1_title_alt

Improved automatic classification of litho-geomorphological units by using raster image blending, Vipava Valley (SW Slovenia)
ID Debevec Jordanova, Galena (Avtor), ID Verbovšek, Timotej (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (48,60 MB)
MD5: C9D776E18C0A9D8A2556CD28FB46E75F
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2072-4292/15/2/531 Povezava se odpre v novem oknu

Izvleček
Automatic landslide classification based on digital elevation models has become a powerful complementary tool to field mapping. Many studies focus on the automatic classification of landslides’ geomorphological features, such as their steep main scarps, but in many cases, the scarps and other morphological features are difficult for algorithms to detect. In this study, we performed an automatic classification of different litho-geomorphological units to differentiate slope mass movements in field maps by using Maximum Likelihood Classification. The classification was based on high-resolution lidar-derived DEM of the Vipava Valley, SW Slovenia. The results show an improvement over previous approaches as we used a blended image (VAT, which included four different raster layers with different weights) along with other common raster layers for morphometric analysis of the surface (e.g., slope, elevation, aspect, TRI, curvature, etc.). The newly created map showed better classification of the five classes we used in the study and recognizes alluvial deposits, carbonate cliffs (including landslide scarps), carbonate plateaus, flysch, and slope deposits better than previous studies. Multivariate statistics recognized the VAT layer as the most important layer with the highest eigenvalues, and when combined with Aspect and Elevation layers, it explained 90% of the total variance. The paper also discusses the correlations between the different layers and which layers are better suited for certain geomorphological surface analyses.

Jezik:Angleški jezik
Ključne besede:slope deposits, geomorphometry, automatic classification, Maximum Likelihood Classification, multivariate statistics, PCA
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:NTF - Naravoslovnotehniška fakulteta
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2023
Št. strani:19 str.
Številčenje:Vol. 15, iss. 2, art. 531
PID:20.500.12556/RUL-154138 Povezava se odpre v novem oknu
UDK:55
ISSN pri članku:2072-4292
DOI:10.3390/rs15020531 Povezava se odpre v novem oknu
COBISS.SI-ID:138060547 Povezava se odpre v novem oknu
Datum objave v RUL:26.01.2024
Število ogledov:486
Število prenosov:32
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Remote sensing
Skrajšan naslov:Remote sens.
Založnik:MDPI
ISSN:2072-4292
COBISS.SI-ID:32345133 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P1-0195
Naslov:Geookolje in geomateriali

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Program financ.:Young researchers

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J1-2477
Naslov:Erozijski procesi na obalnih flišnih klifih z oceno tveganja

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj