Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Improved automatic classification of litho-geomorphological units by using raster image blending, Vipava Valley (SW Slovenia)
ID
Debevec Jordanova, Galena
(
Avtor
),
ID
Verbovšek, Timotej
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(48,60 MB)
MD5: C9D776E18C0A9D8A2556CD28FB46E75F
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2072-4292/15/2/531
Galerija slik
Izvleček
Automatic landslide classification based on digital elevation models has become a powerful complementary tool to field mapping. Many studies focus on the automatic classification of landslides’ geomorphological features, such as their steep main scarps, but in many cases, the scarps and other morphological features are difficult for algorithms to detect. In this study, we performed an automatic classification of different litho-geomorphological units to differentiate slope mass movements in field maps by using Maximum Likelihood Classification. The classification was based on high-resolution lidar-derived DEM of the Vipava Valley, SW Slovenia. The results show an improvement over previous approaches as we used a blended image (VAT, which included four different raster layers with different weights) along with other common raster layers for morphometric analysis of the surface (e.g., slope, elevation, aspect, TRI, curvature, etc.). The newly created map showed better classification of the five classes we used in the study and recognizes alluvial deposits, carbonate cliffs (including landslide scarps), carbonate plateaus, flysch, and slope deposits better than previous studies. Multivariate statistics recognized the VAT layer as the most important layer with the highest eigenvalues, and when combined with Aspect and Elevation layers, it explained 90% of the total variance. The paper also discusses the correlations between the different layers and which layers are better suited for certain geomorphological surface analyses.
Jezik:
Angleški jezik
Ključne besede:
slope deposits
,
geomorphometry
,
automatic classification
,
Maximum Likelihood Classification
,
multivariate statistics
,
PCA
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
NTF - Naravoslovnotehniška fakulteta
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2023
Št. strani:
19 str.
Številčenje:
Vol. 15, iss. 2, art. 531
PID:
20.500.12556/RUL-154138
UDK:
55
ISSN pri članku:
2072-4292
DOI:
10.3390/rs15020531
COBISS.SI-ID:
138060547
Datum objave v RUL:
26.01.2024
Število ogledov:
478
Število prenosov:
32
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Remote sensing
Skrajšan naslov:
Remote sens.
Založnik:
MDPI
ISSN:
2072-4292
COBISS.SI-ID:
32345133
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P1-0195
Naslov:
Geookolje in geomateriali
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Program financ.:
Young researchers
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
J1-2477
Naslov:
Erozijski procesi na obalnih flišnih klifih z oceno tveganja
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj