izpis_h1_title_alt

Modeliranje in napovedovanje medicinske inflacije v državah EU : magistrsko delo
ID Erker, Enja (Avtor), ID Istenič, Tanja (Mentor) Več o mentorju... Povezava se odpre v novem oknu, ID Toman, Aleš (Komentor)

.pdfPDF - Predstavitvena datoteka, prenos (1,47 MB)
MD5: E8EA52B04DAF15BE3F858BBABB540E0A

Izvleček
Magistrsko delo se posveča aktualni temi naraščajočih izdatkov v zdravstvenem sektorju na območju EU. Članice se z rastočimi izdatki v zdravstvu spopadajo že desetletja, kar je posledica hitro starajočega se prebivalstva, nenehnih napredkov v medicinski tehnologiji, razvoja finančnih regulativ v zdravstvu pa tudi rasti cen medicinskih izdelov in storitev, kar imenujemo medicinska inflacija. V teoretičnem delu magistrskega dela sem podrobneje predstavila tri modele za napovedovanje časovnih vrst podatkov, ki sem jih uporabila za napovedovanje medicinske inflacije v državah EU. Uporabila sem uveljavljeni model avtoregresijskih integriranih drsečih sredin (model ARIMA), nadgrajen z vključitvijo sezonske komponente v model sezonskih avtoregresijskih integriranih drsečih sredin (model SARIMA) in pa sodobni model rekurentne nevronske mreže (model RNN). Primerjala in ovrednotila sem natančnost napovedi medicinske inflacije za različna napovedna obdobja. Ugotovila sem, da vsi modeli ustrezno zajamejo kompleksnost dinamike proučevane časovne vrste, za kratkoročno napovedovanje sta primernejša modela ARIMA in SARIMA, za napovedi daljše od šestih mesecev pa so napovedi modela RNN natančnejše. Natančne napovedi medicinske inflacije bi vladnim odločevalcem, ponudnikom zdravstvenih storitev in zavarovalnicam omogočile proaktivno soočanje z izzivi, ki jih prinaša hiter razvoj zdravstvenega sektorja in tako pomembno pripevale k zagotavljanju finančno dostopne in kakovostne zdravstvene oskrbe prebivalcev EU.

Jezik:Slovenski jezik
Ključne besede:medicinska inflacija, avtoregresijski integrirani proces drsečih sredin, ARIMA, sezonski avtoregresijski integrirani proces drsečih sredin, SARIMA, rekurentna nevronska mreža
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2024
PID:20.500.12556/RUL-153455 Povezava se odpre v novem oknu
COBISS.SI-ID:179534339 Povezava se odpre v novem oknu
Datum objave v RUL:07.01.2024
Število ogledov:785
Število prenosov:90
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Modeling and forecasting medical inflation in EU countries
Izvleček:
The master’s thesis addresses the issue of rising costs in the healthcare sector of the EU. Member states have been grappling with escalating healthcare expenditures for decades, which is a consequence of an aging population, rapid advancements in medical technology, the development of financial regulations in the healthcare sector and increasing healthcare prices, the later is known as medical inflation. I have presented three models for predicting time series data and used them to forecast medical inflation in EU countries. Firstly, I used the well-established autoregressive integrated moving average model (ARIMA model), which was then improved by adding a seasonal element to create the seasonal autoregressive integrated moving average model (SARIMA model). Secondly, I used the modern recurrent neural network model (RNN model). I compared and evaluated the accuracy of medical inflation predictions for different forecasting horizons. I discovered that all models adequately capture the complexity of the examined time series dynamics, but the ARIMA and SARIMA models are more suitable for short-term predictions of medical inflation, while the RNN model provides more accurate forecasts for periods longer than six months. Accurate predictions of medical inflation would enable government officials, healthcare providers, and insurance companies to proactively address the challenges of rapid development of the healthcare sector, thus significantly contributing to ensuring financially accessible and high-quality healthcare for EU residents.

Ključne besede:medical inflation, autoregressive integrated moving average process, ARIMA, seasonal autoregressive integrated moving average process, SARIMA, recurrent neural network

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj