Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
IPAD : Iterative Pruning with Activation Deviation for sclera biometrics
ID
Vitek, Matej
(
Avtor
),
ID
Bizjak, Matic
(
Avtor
),
ID
Peer, Peter
(
Avtor
),
ID
Štruc, Vitomir
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(4,52 MB)
MD5: A1A78734FF3F7A0B48ED103A1CC93E1E
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S1319157823001842
Galerija slik
Izvleček
The sclera has recently been gaining attention as a biometric modality due to its various desirable characteristics. A key step in any type of ocular biometric recognition, including sclera recognition, is the segmentation of the relevant part(s) of the eye. However, the high computational complexity of the (deep) segmentation models used in this task can limit their applicability on resource-constrained devices such as smartphones or head-mounted displays. As these devices are a common desired target for such biometric systems, lightweight solutions for ocular segmentation are critically needed. To address this issue, this paper introduces IPAD (Iterative Pruning with Activation Deviation), a novel method for developing lightweight convolutional networks, that is based on model pruning. IPAD uses a novel filter-activation-based criterion (ADC) to determine low-importance filters and employs an iterative model pruning procedure to derive the final lightweight model. To evaluate the proposed pruning procedure, we conduct extensive experiments with two diverse segmentation models, over four publicly available datasets (SBVPI, SLD, SMD and MOBIUS), in four distinct problem configurations and in comparison to state-of-the-art methods from the literature. The results of the experiments show that the proposed filter-importance criterion outperforms the standard L$^1$ and L$^2$ approaches from the literature. Furthermore, the results also suggest that: (i) the pruned models are able to retain (or even improve on) the performance of the unpruned originals, as long as they are not over-pruned, with RITnet and U-Net at 50% of their original FLOPs reaching up to 4% and 7% higher IoU values than their unpruned versions, respectively, (ii) smaller models require more careful pruning, as the pruning process can hurt the model’s generalization capabilities, and (iii) the novel criterion most convincingly outperforms the classic approaches when sufficient training data is available, implying that the abundance of data leads to more robust activation-based importance computation.
Jezik:
Angleški jezik
Ključne besede:
biometrics
,
sclera segmentation
,
ocular biometrics
,
ocular segmentation
,
model pruning
,
lightweight deep learning
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
FE - Fakulteta za elektrotehniko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2023
Št. strani:
21 str.
Številčenje:
Vol. 35, iss. 8, art. 101630
PID:
20.500.12556/RUL-153027
UDK:
004.93:57.087.1
ISSN pri članku:
1319-1578
DOI:
10.1016/j.jksuci.2023.101630
COBISS.SI-ID:
157745667
Datum objave v RUL:
14.12.2023
Število ogledov:
839
Število prenosov:
62
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Journal of King Saud University. Computer and information sciences
Založnik:
Elsevier, King Saud University
ISSN:
1319-1578
COBISS.SI-ID:
519417113
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
biometrija
,
segmentacija beločnice
,
očesna biometrija
,
segmentacija očesa
,
rezanje modelov
,
lahko globoko učenje
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0250
Naslov:
Metrologija in biometrični sistemi
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0214
Naslov:
Računalniški vid
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Program financ.:
Young researchers
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj