izpis_h1_title_alt

Pogojeno generiranje glasbenega zapisa z difuzijskimi modeli
ID Kleine, Žiga (Avtor), ID Čehovin Zajc, Luka (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (2,23 MB)
MD5: 7BA0312F7446AD64ACF4291C107F40B9

Izvleček
Računalniško generirana glasba lahko skladateljem služi kot pomembno orodje za krepitev glasbene ustvarjalnosti in širjenje znanja o glasbeni kompoziciji. Zaradi tega je računalniško generiranje glasbe dobro raziskano področje, ki se je z razvojem globokih nevronskih mrež močno razcvetelo. Trenutno predstavlja velik izziv na tem področju generiranje daljših stilsko konsistentnih glasbenih sekvenc. Drug izziv, s katerim se pogosto srečamo, je nadzor nad lastnostmi generirane glasbe. Obeh omenjenih izzivov smo se lotili z implementacijo difuzijskega verjetnostnega modela za odpravljanje šuma, sposobnega ustvarjanja izvirnega glasbenega zapisa, ki sledi obliki glasbenih spremljav videoiger igralne konzole NES, hkrati pa je proces generiranja mogoče voditi s pomočjo avtomatsko pridobljenih čustvenih oznak. V okviru magistrskega dela nam je uspelo implementirati difuzijski model, ki smo ga ovrednotili s pomočjo glasbenega Turingovega testa, v katerem so računalniško generirane melodije anketirance v 43% primerih preslepile za melodije, ki jih je napisal človek.

Jezik:Slovenski jezik
Ključne besede:globoko učenje, pogojeni generativni modeli, difuzijski modeli, generiranje glasbenega zapisa
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2023
PID:20.500.12556/RUL-152754 Povezava se odpre v novem oknu
COBISS.SI-ID:178611715 Povezava se odpre v novem oknu
Datum objave v RUL:06.12.2023
Število ogledov:490
Število prenosov:74
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Conditioned symbolic music generation with diffusion models
Izvleček:
Computer generated music can serve as an important tool for composers to enhance their musical creativity and expand their knowledge about musical composition. This makes computer music generation a well researched field that has expanded greatly with the development of deep neural networks. Currently, generating longer stylistically consistent music sequences is a big challenge. Another challenge we often encounter is controlling the properties of the generated music. We tackled both of the mentioned challenges by implementing a denoising diffusion probabilistic model capable of generating original music notation that follows the form of the soundtracks for the NES game console, while the generation process can be guided by automatic emotion annotations. We managed to implement a diffusion model, which we evaluated with the help of a musical Turing test, where in 43% cases computer generated melodies confused the test subjects for human written melodies.

Ključne besede:deep learning, conditioned generational models, diffusion models, symbolic music generation

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj