Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
A data-driven simulation and Gaussian process regression model for hydraulic press condition diagnosis
ID
Jankovič, Denis
(
Avtor
),
ID
Šimic, Marko
(
Avtor
),
ID
Herakovič, Niko
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(9,29 MB)
MD5: DADC325C4D71CC30CF79D75D705210D6
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S1474034623004044
Galerija slik
Izvleček
Improving overall performance and increasing operational reliability are currently among the leading research topics in the field of hydraulic systems. In recent years, the use of artificial intelligence-based modeling and design techniques has developed rapidly to account for the nonlinear properties of Gaussian systems and to predict fault reasoning in hydraulic systems. In this study, feature acquisition and selection are proposed to prepare input data for a simulation-based learning approach. In addition, a cause-and-effect analysis is performed by considering various what-if scenarios as external disturbances that affect the response of the hydraulic press. While the objective of the sheet metal bending cycle and a pulley system is to initiate a load on the hydraulic press, an intelligent sensing system is used to observe the behavior of the hydraulic press during the phases of sheet metal bending cycle, i.e., the forming, leveling, and movement. In addition, the Gaussian process regression method is used to build data-driven prediction models with different predictors that contribute significantly to improving predictive accuracy. The condition diagnosis indicates the accurate performance of predictive models observing the coefficient of determination R$^2$ at 0.998 for the bending phase, 0.962 for the leveling phase, and 0.999 for the movement phase. Although the approximation of the simulation model is efficient, it is found that certain features are reasonably well approximated with regard to the forming phases.
Jezik:
Angleški jezik
Ključne besede:
hydraulic system
,
artificial intelligence
,
Gaussian regression modeling
,
simulation-based learning
,
condition monitoring
,
cause and effect analysis
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2024
Št. strani:
22 str.
Številčenje:
Vol. 59, art. 102276
PID:
20.500.12556/RUL-152638
UDK:
621.22:004.8
ISSN pri članku:
1474-0346
DOI:
10.1016/j.aei.2023.102276
COBISS.SI-ID:
174551043
Datum objave v RUL:
01.12.2023
Število ogledov:
418
Število prenosov:
59
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Advanced engineering informatics : the science of supporting knowledge-intensive activities
Skrajšan naslov:
Adv. eng. inf.
Založnik:
Elsevier
ISSN:
1474-0346
COBISS.SI-ID:
7089686
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
hidravlični sistem
,
umetna inteligenca
,
Gaussovo regresijsko modeliranje
,
spremljanje stanja
,
simulacijsko učenje
,
analiza vzrokov in učinkov
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0248
Naslov:
Inovativni izdelovalni sistemi in procesi
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Program financ.:
Young researchers
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj