Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Convolutional neural networks combined with feature selection for radio-frequency fingerprinting
ID
Baldini, Gianmarco
(
Avtor
),
ID
Amerini, Irene
(
Avtor
),
ID
Dimc, Franc
(
Avtor
),
ID
Bonavitacola, Fausto
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(3,65 MB)
MD5: 7CC1EC969FD04BCBF0FD3F9516361ED1
URL - Izvorni URL, za dostop obiščite
https://onlinelibrary.wiley.com/doi/10.1111/coin.12592
Galerija slik
Izvleček
Radio-frequency fingerprinting is a technique for the authentication and identification of wireless devices using their intrinsic physical features and an analysis of the digitized signal collected during transmission. The technique is based on the fact that the unique physical features of the devices generate discriminating features in the transmitted signal, which can then be analyzed using signal-processing and machine-learning algorithms. Deep learning and more specifically convolutional neural networks (CNNs) have been successfully applied to the problem of radio-frequency fingerprinting using a spectral domain representation of the signal. A potential problem is the large size of the data to be processed, because this size impacts on the processing time during the application of the CNN. We propose an approach to addressing this problem, based on dimensionality reduction using feature-selection algorithms before the spectrum domain representation is given as an input to the CNN. The approach is applied to two public data sets of radio-frequency devices using different feature-selection algorithms for different values of the signal-to-noise ratio. The results show that the approach is able to achieve not only a shorter processing time; it also provides a superior classification performance in comparison to the direct application of CNNs.
Jezik:
Angleški jezik
Ključne besede:
deep learning
,
feature selection
,
radio frequency
,
security
,
wireless 
communication
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FPP - Fakulteta za pomorstvo in promet
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2023
Št. strani:
Str. 734-758
Številčenje:
Vol. 39, iss. 5
PID:
20.500.12556/RUL-152604
UDK:
004.032.26
ISSN pri članku:
1467-8640
DOI:
10.1111/coin.12592
COBISS.SI-ID:
162703619
Datum objave v RUL:
30.11.2023
Število ogledov:
634
Število prenosov:
47
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Computational intelligence
Skrajšan naslov:
Comput. intell.
Založnik:
Wiley
ISSN:
1467-8640
COBISS.SI-ID:
19071527
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
avtentikacija
,
identifikacija
,
radiofrekvenčni prstni odtis
,
nevronske mreže
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj