Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
HIDRA2 : deep-learning ensemble sea level and storm tide forecasting in the presence of seiches – the case of the northern Adriatic
ID
Rus, Marko
(
Avtor
),
ID
Fettich, Anja
(
Avtor
),
ID
Kristan, Matej
(
Avtor
),
ID
Ličer, Matjaž
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(9,96 MB)
MD5: 3B750111125F1B3A387644DE08426384
URL - Izvorni URL, za dostop obiščite
https://gmd.copernicus.org/articles/16/271/2023/
Galerija slik
Izvleček
We propose a new deep-learning architecture HIDRA2 for sea level and storm tide modeling, which is extremely fast to train and apply and outperforms both our previous network design HIDRA1 and two state-of-the-art numerical ocean models (a NEMO engine with sea level data assimilation and a SCHISM ocean modeling system), over all sea level bins and all forecast lead times. The architecture of HIDRA2 employs novel atmospheric, tidal and sea surface height (SSH) feature encoders as well as a novel feature fusion and SSH regression block. HIDRA2 was trained on surface wind and pressure fields from a single member of the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric ensemble and on Koper tide gauge observations. An extensive ablation study was performed to estimate the individual importance of input encoders and data streams. Compared to HIDRA1, the overall mean absolute forecast error is reduced by 13 %, while in storm events it is lower by an even larger margin of 25 %. Consistent superior performance over HIDRA1 as well as over general circulation models is observed in both tails of the sea level distribution: low tail forecasting is relevant for marine traffic scheduling to ports of the northern Adriatic, while high tail accuracy helps coastal flood response. Power spectrum analysis indicates that HIDRA2 most accurately represents the energy density peak centered on the ground state sea surface eigenmode (seiche) and comes a close second to SCHISM in the energy band of the first excited eigenmode. To assign model errors to specific frequency bands covering diurnal and semi-diurnal tides and the two lowest basin seiches, spectral decomposition of sea levels during several historic storms is performed. HIDRA2 accurately predicts amplitudes and temporal phases of the Adriatic basin seiches, which is an important forecasting benefit due to the high sensitivity of the Adriatic storm tide level to the temporal lag between peak tide and peak seiche.
Jezik:
Angleški jezik
Ključne besede:
sea level modelling
,
deep learning
,
storm surges
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2023
Št. strani:
Str. 271-288
Številčenje:
Vol. 16, iss. 1
PID:
20.500.12556/RUL-152345
UDK:
004.925.8:551.461
ISSN pri članku:
1991-959X
DOI:
10.5194/gmd-16-271-2023
COBISS.SI-ID:
137128195
Datum objave v RUL:
21.11.2023
Število ogledov:
861
Število prenosov:
81
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Geoscientific model development
Skrajšan naslov:
Geosci. model dev.
Založnik:
Copernicus Publications
ISSN:
1991-959X
COBISS.SI-ID:
517533209
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
modeliranje višine morske gladine
,
globoko učenje
,
poplavljanje
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P1-0237
Naslov:
Raziskave obalnega morja
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
J2-2506
Naslov:
Adaptivne globoke metode zaznavanja za avtonomna plovila
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj