Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Edge general position sets in Fibonacci and Lucas cubes
ID
Klavžar, Sandi
(
Author
),
ID
Tan, Elif
(
Author
)
PDF - Presentation file,
Download
(419,79 KB)
MD5: 84E744593255A0AC6287B6CB415B0D19
URL - Source URL, Visit
https://link.springer.com/article/10.1007/s40840-023-01517-y
Image galllery
Abstract
A set of edges $X\subseteq E(G)$ of a graph $G$ is an edge general position set if no three edges from $X$ lie on a common shortest path in $G$. The cardinality of a largest edge general position set of $G$ is the edge general position number of $G$. In this paper edge general position sets are investigated in partial cubes. In particular it is proved that the union of two largest $\Theta$-classes of a Fibonacci cube or a Lucas cube is a maximal edge general position set.
Language:
English
Keywords:
general position set
,
edge general position sets
,
partial cubes
,
Fibonacci cubes
,
Lucas cubes
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Year:
2023
Number of pages:
11 str.
Numbering:
Vol. 46, iss. 4, art. 120
PID:
20.500.12556/RUL-148030
UDC:
519.17
ISSN on article:
0126-6705
DOI:
10.1007/s40840-023-01517-y
COBISS.SI-ID:
152529667
Publication date in RUL:
26.07.2023
Views:
1228
Downloads:
75
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Bulletin of the Malaysian Mathematical Sciences Society
Shortened title:
Bull. Malays. Math. Sci. Soc.
Publisher:
Springer Nature, Malaysian Mathematical Sciences Society, Penerbit Universiti Sains Malaysia
ISSN:
0126-6705
COBISS.SI-ID:
515781657
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Secondary language
Language:
Slovenian
Keywords:
množica v splošni legi
,
množice povezav v splošni legi
,
delne kocke
,
Fibonaccijeve kocke
,
Lucasove kocke
Projects
Funder:
TUBITAK - Türkiye Bilimsel ve Teknolojik Araştırma Kurumu
Project number:
122N184
Funder:
ARRS - Slovenian Research Agency
Project number:
BI-TR/22-24-20
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0297
Name:
Teorija grafov
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-2452
Name:
Strukturni, optimizacijski in algoritmični problemi v geometrijskih in topoloških predstavitvah grafov
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0285
Name:
Metrični problemi v grafih in hipergrafih
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back