izpis_h1_title_alt

Edge general position sets in Fibonacci and Lucas cubes
ID Klavžar, Sandi (Author), ID Tan, Elif (Author)

.pdfPDF - Presentation file, Download (419,79 KB)
MD5: 84E744593255A0AC6287B6CB415B0D19
URLURL - Source URL, Visit https://link.springer.com/article/10.1007/s40840-023-01517-y This link opens in a new window

Abstract
A set of edges $X\subseteq E(G)$ of a graph $G$ is an edge general position set if no three edges from $X$ lie on a common shortest path in $G$. The cardinality of a largest edge general position set of $G$ is the edge general position number of $G$. In this paper edge general position sets are investigated in partial cubes. In particular it is proved that the union of two largest $\Theta$-classes of a Fibonacci cube or a Lucas cube is a maximal edge general position set.

Language:English
Keywords:general position set, edge general position sets, partial cubes, Fibonacci cubes, Lucas cubes
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2023
Number of pages:11 str.
Numbering:Vol. 46, iss. 4, art. 120
PID:20.500.12556/RUL-148030 This link opens in a new window
UDC:519.17
ISSN on article:0126-6705
DOI:10.1007/s40840-023-01517-y This link opens in a new window
COBISS.SI-ID:152529667 This link opens in a new window
Publication date in RUL:26.07.2023
Views:1237
Downloads:75
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Bulletin of the Malaysian Mathematical Sciences Society
Shortened title:Bull. Malays. Math. Sci. Soc.
Publisher:Springer Nature, Malaysian Mathematical Sciences Society, Penerbit Universiti Sains Malaysia
ISSN:0126-6705
COBISS.SI-ID:515781657 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:množica v splošni legi, množice povezav v splošni legi, delne kocke, Fibonaccijeve kocke, Lucasove kocke

Projects

Funder:TUBITAK - Türkiye Bilimsel ve Teknolojik Araştırma Kurumu
Project number:122N184

Funder:ARRS - Slovenian Research Agency
Project number:BI-TR/22-24-20

Funder:ARRS - Slovenian Research Agency
Project number:P1-0297
Name:Teorija grafov

Funder:ARRS - Slovenian Research Agency
Project number:J1-2452
Name:Strukturni, optimizacijski in algoritmični problemi v geometrijskih in topoloških predstavitvah grafov

Funder:ARRS - Slovenian Research Agency
Project number:N1-0285
Name:Metrični problemi v grafih in hipergrafih

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back