Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Predictive models for compound binding to androgen and estrogen receptors based on counter-propagation artificial neural networks
ID
Stanojević, Mark
(
Avtor
),
ID
Sollner Dolenc, Marija
(
Avtor
),
ID
Vračko, Marjan
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(511,42 KB)
MD5: A85AD26AB39B72351CEDCE314EB84392
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2305-6304/11/6/486
Galerija slik
Izvleček
Endocrine-disrupting chemicals (EDCs) are exogenous substances that interfere with the normal function of the human endocrine system. These chemicals can affect specific nuclear receptors, such as androgen receptors (ARs) or estrogen receptors (ER) α and β, which play a crucial role in regulating complex physiological processes in humans. It is now more crucial than ever to identify EDCs and reduce exposure to them. For screening and prioritizing chemicals for further experimentation, the use of artificial neural networks (ANN), which allow the modeling of complicated, nonlinear relationships, is most appropriate. We developed six models that predict the binding of a compound to ARs, ERα, or ERβ as agonists or antagonists, using counter-propagation artificial neural networks (CPANN). Models were trained on a dataset of structurally diverse compounds, and activity data were obtained from the CompTox Chemicals Dashboard. Leave-one-out (LOO) tests were performed to validate the models. The results showed that the models had excellent performance with prediction accuracy ranging from 94% to 100%. Therefore, the models can predict the binding affinity of an unknown compound to the selected nuclear receptor based solely on its chemical structure. As such, they represent important alternatives for the safety prioritization of chemicals.
Jezik:
Angleški jezik
Ključne besede:
CPANN
,
androgen receptor
,
estrogen receptor
,
endocrine-disrupting chemicals
,
endocrinology
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FFA - Fakulteta za farmacijo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2023
Št. strani:
15 str.
Številčenje:
Vol. 11, iss. 6, art. 486
PID:
20.500.12556/RUL-146397
UDK:
616.4+612.43
ISSN pri članku:
2305-6304
DOI:
10.3390/toxics11060486
COBISS.SI-ID:
153712131
Datum objave v RUL:
17.07.2023
Število ogledov:
574
Število prenosov:
33
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Toxics : Elektronski vir
Skrajšan naslov:
Toxics
Založnik:
MDPI
ISSN:
2305-6304
COBISS.SI-ID:
520262681
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
androgeni receptor
,
estrogenski receptor
,
endokrine motnje
,
protipropagacijske umetne nevronske mreže
,
endokrinologija
,
hormonski motilci
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P1-0170
Naslov:
Molekulski mehanizmi uravnavanja celičnih procesov v povezavi z nekaterimi boleznimi pri človeku
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P1-0208
Naslov:
Farmacevtska kemija: načrtovanje, sinteza in vrednotenje učinkovin
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj