Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
On methods for merging mixture model components suitable for unsupervised image segmentation tasks
ID
Panić, Branislav
(
Avtor
),
ID
Nagode, Marko
(
Avtor
),
ID
Klemenc, Jernej
(
Avtor
),
ID
Oman, Simon
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(3,79 MB)
MD5: CF0FFB64EA49A1A02F0F0B4D414C6507
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2227-7390/10/22/4301
Galerija slik
Izvleček
Unsupervised image segmentation is one of the most important and fundamental tasks in many computer vision systems. Mixture model is a compelling framework for unsupervised image segmentation. A segmented image is obtained by clustering the pixel color values of the image with an estimated mixture model. Problems arise when the selected optimal mixture model contains a large number of mixture components. Then, multiple components of the estimated mixture model are better suited to describe individual segments of the image. We investigate methods for merging the components of the mixture model and their usefulness for unsupervised image segmentation. We define a simple heuristic for optimal segmentation with merging of the components of the mixture model. The experiments were performed with gray-scale and color images. The reported results and the performed comparisons with popular clustering approaches show clear benefits of merging components of the mixture model for unsupervised image segmentation.
Jezik:
Angleški jezik
Ključne besede:
mixture models
,
parameter estimation
,
clustering
,
unsupervised image segmentation
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2022
Št. strani:
22 str.
Številčenje:
Vol. 10, iss. 22, art. 4301
PID:
20.500.12556/RUL-142662
UDK:
51:004
ISSN pri članku:
2227-7390
DOI:
10.3390/math10224301
COBISS.SI-ID:
129898499
Datum objave v RUL:
18.11.2022
Število ogledov:
593
Število prenosov:
92
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Mathematics
Skrajšan naslov:
Mathematics
Založnik:
MDPI AG
ISSN:
2227-7390
COBISS.SI-ID:
523267865
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
mešani modeli
,
ocena parametrov
,
grozdenje
,
nenadzorovana segmentacija slik
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0182
Naslov:
Razvojna vrednotenja
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj