izpis_h1_title_alt

Hermiteova interpolacija funkcij dveh spremenljivk : delo diplomskega seminarja
ID Penko, Klara (Author), ID Knez, Marjetka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (836,16 KB)
MD5: 21D86D96F585D3D143C6542759155F13

Abstract
V delu diplomskega seminarja problem interpolacije funkcij ene spremenljivke razširimo na funkcije dveh spremenljivk. Za preprostejši opis Hermiteovega interpolacijskega problema uvedemo posebno notacijo, s katero problem interpolacije opišemo z drevesno strukturo, ki jo nato preuredimo v strukturo po blokih. Vpeljemo Vandermondovo matriko in si podrobneje ogledamo rešljivost Hermiteovega interpolacijskega problema z uporabo strukture po blokih. Zapišemo nekaj pogojev za nerešljivost, enolično rešljivost in skoraj enolično rešljivost. Obravnavamo tudi izračun Hermiteovih baznih polinomov ter izpeljemo Newtonovo bazo, ki nam skupaj s posplošenimi deljenimi diferencami omogoča zapis Hermiteovih interpolacijskih polinomov v zaključeni obliki. Celoten diplomski seminar je podprt z veliko praktičnimi primeri, ki omogočajo lažje razumevanje.

Language:Slovenian
Keywords:Hermiteova interpolacija, struktura po blokih, Newtonovi bazni polinomi, deljene diference
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-140688 This link opens in a new window
UDC:519.6
COBISS.SI-ID:122326787 This link opens in a new window
Publication date in RUL:17.09.2022
Views:558
Downloads:41
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Hermite interpolation of two variable functions
Abstract:
In this thesis we extend the problem of interpolating one variable functions to interpolating two variable functions. For a simpler description of the Hermite interpolation problem, we introduce some notation so that the interpolation problem can be described in terms of a tree structure which can be further arranged in a blockwise structure. We derive the Vandermond matrix and look at some aspects of poisedness, using the notion of blockwise structure. We write down a number of conditions for never poisedness, poisedness and almost poisedness. We consider the computation of Hermite basis polynomials and derive a Newton basis which, together with finite differences, allows us to write the Hermite interpolation polynomials in a closed form. The whole thesis is supported by many practical examples to make it easier to understand.

Keywords:Hermite interpolation, blockwise structure, Newton basis polynomials, finite difference

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back