izpis_h1_title_alt

Hermiteova interpolacija funkcij dveh spremenljivk : delo diplomskega seminarja
ID Penko, Klara (Avtor), ID Knez, Marjetka (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (836,16 KB)
MD5: 21D86D96F585D3D143C6542759155F13

Izvleček
V delu diplomskega seminarja problem interpolacije funkcij ene spremenljivke razširimo na funkcije dveh spremenljivk. Za preprostejši opis Hermiteovega interpolacijskega problema uvedemo posebno notacijo, s katero problem interpolacije opišemo z drevesno strukturo, ki jo nato preuredimo v strukturo po blokih. Vpeljemo Vandermondovo matriko in si podrobneje ogledamo rešljivost Hermiteovega interpolacijskega problema z uporabo strukture po blokih. Zapišemo nekaj pogojev za nerešljivost, enolično rešljivost in skoraj enolično rešljivost. Obravnavamo tudi izračun Hermiteovih baznih polinomov ter izpeljemo Newtonovo bazo, ki nam skupaj s posplošenimi deljenimi diferencami omogoča zapis Hermiteovih interpolacijskih polinomov v zaključeni obliki. Celoten diplomski seminar je podprt z veliko praktičnimi primeri, ki omogočajo lažje razumevanje.

Jezik:Slovenski jezik
Ključne besede:Hermiteova interpolacija, struktura po blokih, Newtonovi bazni polinomi, deljene diference
Vrsta gradiva:Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2022
PID:20.500.12556/RUL-140688 Povezava se odpre v novem oknu
UDK:519.6
COBISS.SI-ID:122326787 Povezava se odpre v novem oknu
Datum objave v RUL:17.09.2022
Število ogledov:563
Število prenosov:41
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Hermite interpolation of two variable functions
Izvleček:
In this thesis we extend the problem of interpolating one variable functions to interpolating two variable functions. For a simpler description of the Hermite interpolation problem, we introduce some notation so that the interpolation problem can be described in terms of a tree structure which can be further arranged in a blockwise structure. We derive the Vandermond matrix and look at some aspects of poisedness, using the notion of blockwise structure. We write down a number of conditions for never poisedness, poisedness and almost poisedness. We consider the computation of Hermite basis polynomials and derive a Newton basis which, together with finite differences, allows us to write the Hermite interpolation polynomials in a closed form. The whole thesis is supported by many practical examples to make it easier to understand.

Ključne besede:Hermite interpolation, blockwise structure, Newton basis polynomials, finite difference

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj