Obstoječe metode za štetje objektov z malo učnimi primeri temeljijo na primerjavi značilk slike z značilkami izluščenimi iz primerov objektov. Ta pristop ni dovolj ekspresiven, ker temelji zgolj na uporabi vizualnih značilk primerov objektov. V tem delu predlagamo novo arhitekturo, ki namesto tega napoveduje model objektov. Naša metoda se eksplicitno uči predznanja o objektih, ki je odvisno od skale primerov objektov ter ga predela v model objektov z uporabo transformerskega modula za napoved modela. Ta združi predznanje z informacijami izluščenimi iz primerov objektov in celotne slike, s čemer kombinira znanje o objektih naslpoh z informacijami, specifičnimi za kategorijo objektov, medtem ko tudi globalno sklepa preko celotne slike. Z minimalno arhitekturno spremembo, lahko naš model modificiramo v metodo za štetje brez primerov. Razvita metoda doseže najboljše rezultate pri štetju z nekaj primeri, štetju z enim primerom in štetju brez primerov z relativno izboljšavo od 33.0 %, 33.6 % in 18.0 % v smislu MAE na testni množici podatkovne množice FSC147 v primerjavi z obstoječimi, trenutno najboljšimi metodami.
|