izpis_h1_title_alt

Self-adaptive approximate mobile deep learning
ID Knez, Timotej (Avtor), ID Machidon, Octavian-Mihai (Avtor), ID Pejović, Veljko (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,50 MB)
MD5: 63EC2A9E4F57BE3F9C37A4E9DCF9CAD8
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2079-9292/10/23/2958 Povezava se odpre v novem oknu

Izvleček
Edge intelligence is currently facing several important challenges hindering its performance, with the major drawback being meeting the high resource requirements of deep learning by the resource-constrained edge computing devices. The most recent adaptive neural network compression techniques demonstrated, in theory, the potential to facilitate the flexible deployment of deep learning models in real-world applications. However, their actual suitability and performance in ubiquitous or edge computing applications has not, to this date, been evaluated. In this context, our work aims to bridge the gap between the theoretical resource savings promised by such approaches and the requirements of a real-world mobile application by introducing algorithms that dynamically guide the compression rate of a neural network according to the continuously changing context in which the mobile computation is taking place. Through an in-depth trace-based investigation, we confirm the feasibility of our adaptation algorithms in offering a scalable trade-off between the inference accuracy and resource usage. We then implement our approach on real-world edge devices and, through a human activity recognition application, confirm that it offers efficient neural network compression adaptation in highly dynamic environments. The results of our experiment with 21 participants show that, compared to using static network compression, our approach uses 2.18× less energy with only a 1.5% drop in the average accuracy of the classification.

Jezik:Angleški jezik
Ključne besede:mobile sensing, neural networks, dynamic optimization, quantization, DNN slimming
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2021
Št. strani:23 str.
Številčenje:Vol. 10, iss. 23, art. 2958
PID:20.500.12556/RUL-136700 Povezava se odpre v novem oknu
UDK:004
ISSN pri članku:2079-9292
DOI:10.3390/electronics10232958 Povezava se odpre v novem oknu
COBISS.SI-ID:89465859 Povezava se odpre v novem oknu
Datum objave v RUL:16.05.2022
Število ogledov:975
Število prenosov:152
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Electronics
Skrajšan naslov:Electronics
Založnik:MDPI
ISSN:2079-9292
COBISS.SI-ID:523068953 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:01.12.2021

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:mobilno zaznavanje, nevronske mreže, dinamična optimizacija, kvantizacija, tanjšanje globokih mrež

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:N2-0136
Naslov:Povečanje učinkovitosti uporabe virov na pametnih telefonih s pomočjo približnega računanja

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J2-3047
Naslov:Kontekstno odvisno približno računanje na mobilnih napravah

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0098
Naslov:Računalniške strukture in sistemi

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj