izpis_h1_title_alt

Analysis of machine learning algorithms for anomaly detection on edge devices
ID Huč, Aleks (Avtor), ID Šalej, Jakob (Avtor), ID Trebar, Mira (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (10,89 MB)
MD5: A50D89A9038F2FC98157A8E8AF36BD98
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/1424-8220/21/14/4946 Povezava se odpre v novem oknu

Izvleček
The Internet of Things (IoT) consists of small devices or a network of sensors, which permanently generate huge amounts of data. Usually, they have limited resources, either computing power or memory, which means that raw data are transferred to central systems or the cloud for analysis. Lately, the idea of moving intelligence to the IoT is becoming feasible, with machine learning (ML) moved to edge devices. The aim of this study is to provide an experimental analysis of processing a large imbalanced dataset (DS2OS), split into a training dataset (80%) and a test dataset (20%). The training dataset was reduced by randomly selecting a smaller number of samples to create new datasets Di (i = 1, 2, 5, 10, 15, 20, 40, 60, 80%). Afterwards, they were used with several machine learning algorithms to identify the size at which the performance metrics show saturation and classification results stop improving with an F1 score equal to 0.95 or higher, which happened at 20% of the training dataset. Further on, two solutions for the reduction of the number of samples to provide a balanced dataset are given. In the first, datasets DRi consist of all anomalous samples in seven classes and a reduced majority class (‘NL’) with i = 0.1, 0.2, 0.5, 1, 2, 5, 10, 15, 20 percent of randomly selected samples. In the second, datasets DCi are generated from the representative samples determined with clustering from the training dataset. All three dataset reduction methods showed comparable performance results. Further evaluation of training times and memory usage on Raspberry Pi 4 shows a possibility to run ML algorithms with limited sized datasets on edge devices.

Jezik:Angleški jezik
Ključne besede:machine learning, classification, edge computing, imbalanced dataset, training dataset, anomaly detection, clustering
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2021
Št. strani:22 str.
Številčenje:Vol. 21, iss. 14, art. 4946
PID:20.500.12556/RUL-135739 Povezava se odpre v novem oknu
UDK:004.85
ISSN pri članku:1424-8220
DOI:10.3390/s21144946 Povezava se odpre v novem oknu
COBISS.SI-ID:71000323 Povezava se odpre v novem oknu
Datum objave v RUL:30.03.2022
Število ogledov:753
Število prenosov:171
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Sensors
Skrajšan naslov:Sensors
Založnik:MDPI
ISSN:1424-8220
COBISS.SI-ID:10176278 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:20.07.2021

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:strojno učenje, klasifikacija, robno računanje, neuravnotežena podatkovna zbirka, učna zbirka, zaznavanje anomalij, gručenje

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0359
Naslov:Vseprisotno računalništvo

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj