izpis_h1_title_alt

Comparison of in-situ chlorophyll-a time series and Sentinel-3 Ocean and Land Color Instrument data in Slovenian national waters (Gulf of Trieste, Adriatic Sea)
ID Cherif, El Khalil (Avtor), ID Mozetič, Patricija (Avtor), ID Francé, Janja (Avtor), ID Flander-Putrle, Vesna (Avtor), ID Faganeli Pucer, Jana (Avtor), ID Vodopivec, Martin (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (5,76 MB)
MD5: 1DCEFB74C0FDF90B7B3AF4F24263DF53
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2073-4441/13/14/1903 Povezava se odpre v novem oknu

Izvleček
While satellite remote sensing of ocean color is a viable tool for estimating large-scale patterns of chlorophyll-a (Chl-a) and global ocean primary production, its application in coastal waters is limited by the complex optical properties. An exploratory study was conducted in the Gulf of Trieste (Adriatic Sea) to assess the usefulness of Sentinel-3 satellite data in the Slovenian national waters. OLCI (Ocean and Land Colour Instrument) Chl-a level 2 products (OC4Me and NN) were compared to monthly Chl-a in-situ measurements at fixed sites from 2017 to 2019. In addition, eight other methods for estimating Chl-a concentration based on reflectance in different spectral bands were tested (OC3M, OC4E, MedOC4, ADOC4, AD4, 3B-OLCI, 2B-OLCI and G2B). For some of these methods, calibration was performed on in-situ data to achieve a better agreement. Finally, L1-regularized regression and random forest were trained on the available dataset to test the capabilities of the machine learning approach. The results show rather poor performance of the two originally available products. The same is true for the other eight methods and the fits to the measured values also show only marginal improvement. The best results are obtained with the blue-green methods (OC3, OC4 and AD4), especially the AD4SI (a designated fit of AD4) with R = 0.56 and RMSE = 0.4 mg/m$^3$, while the near infrared (NIR) methods show underwhelming performance. The machine learning approach can only explain 30% of the variability and the RMSE is of the same order as for the blue-green methods. We conclude that due to the low Chl-a concentration and the moderate turbidity of the seawater, the reflectance provided by the Sentinel-3 OLCI spectrometer carries little information about Chl-a in the Slovenian national waters within the Gulf of Trieste and is therefore of limited use for our purposes. This requires that we continue to improve satellite products for use in those marine waters that have not yet proven suitable. In this way, satellite data could be effectively integrated into a comprehensive network that would allow a reliable assessment of ecological status, taking into account environmental regulations.

Jezik:Angleški jezik
Ključne besede:hydrobiology, coastal waters, Gulf of Trieste, chlorophyll-a, Sentinel-3, OLCI, machine learning
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2021
Št. strani:22 str.
Številčenje:Vol. 13, iss. 14, art. 1903
PID:20.500.12556/RUL-135611 Povezava se odpre v novem oknu
UDK:574
ISSN pri članku:2073-4441
DOI:10.3390/w13141903 Povezava se odpre v novem oknu
COBISS.SI-ID:70637571 Povezava se odpre v novem oknu
Datum objave v RUL:22.03.2022
Število ogledov:880
Število prenosov:143
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Water
Skrajšan naslov:Water
Založnik:Molecular Diversity Preservation International - MDPI
ISSN:2073-4441
COBISS.SI-ID:36731653 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:09.07.2021

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:hidrobiologija, obalne vode, Tržaški zaliv, klorofil-a, Sentinel-3, OLCI, strojno učenje

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P1-0237
Naslov:Raziskave obalnega morja

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:Z7-1884
Naslov:Cirkulacijski-biogeokemijski model visoke ločljivosti in 20-letna reanaliza primarne produkcije v Jadranu

Financer:FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:UIDB/50009/2020
Akronim:LARSyS

Financer:FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:PTDC/EEI-AUT/31172/2017
Akronim:VOAMAIS

Financer:FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:02/SAICT/2017/31172
Akronim:VOAMAIS

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj