Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Generative adversarial networks for generating synthetic features for Wi-Fi signal quality
ID
Castelli, Mauro
(
Avtor
),
ID
Manzoni, Luca
(
Avtor
),
ID
Espindola, Tatiana
(
Avtor
),
ID
Popovič, Aleš
(
Avtor
),
ID
De Lorenzo, Andrea
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(3,48 MB)
MD5: 03FE562EBE86E20354EB4985987DD899
URL - Izvorni URL, za dostop obiščite
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260308
Galerija slik
Izvleček
Wireless networks are among the fundamental technologies used to connect people. Considering the constant advancements in the field, telecommunication operators must guarantee a high-quality service to keep their customer portfolio. To ensure this high-quality service, it is common to establish partnerships with specialized technology companies that deliver software services in order to monitor the networks and identify faults and respective solutions. A common barrier faced by these specialized companies is the lack of data to develop and test their products. This paper investigates the use of generative adversarial networks (GANs), which are state-of-the-art generative models, for generating synthetic telecommunication data related to Wi-Fi signal quality. We developed, trained, and com%pared two of the most used GAN architectures: the Vanilla GAN and the Wasserstein GAN (WGAN). Both models presented satisfactory results and were able to generate synthetic data similar to the real ones. In particular, the distribution of the synthetic data overlaps the distribution of the real data for all of the considered features. Moreover, the considered generative models can reproduce the same associations observed for the synthetic features. We chose the WGAN as the final model, but both models are suitable for addressing the problem at hand.
Jezik:
Angleški jezik
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
EF - Ekonomska fakulteta
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2021
Št. strani:
Str. 1-30
Številčenje:
Vol. 16, iss. 11
PID:
20.500.12556/RUL-134714
UDK:
659.2:004
ISSN pri članku:
1932-6203
DOI:
10.1371/journal.pone.0260308
COBISS.SI-ID:
86681091
Datum objave v RUL:
27.01.2022
Število ogledov:
723
Število prenosov:
174
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
PloS one
Založnik:
PLOS
ISSN:
1932-6203
COBISS.SI-ID:
2005896
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
23.11.2021
Projekti
Financer:
FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:
DSAIPA/DS/0022/2018
Naslov:
GADgET
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Program financ.:
Raziskovalni program
Številka projekta:
P5-0410
Naslov:
Digitalizacija kot gonilo trajnostnega razvoja posameznika, organizacij in družbe
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj