izpis_h1_title_alt

A Random Forest-based accuracy prediction model for augmented biofeedback in a precision shooting training system
ID Guo, Junqi (Avtor), ID Yang, Lan (Avtor), ID Umek, Anton (Avtor), ID Bie, Rongfang (Avtor), ID Tomažič, Sašo (Avtor), ID Kos, Anton (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (5,46 MB)
MD5: EC65264F3A4066F4090F764DD401D65B
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/1424-8220/20/16/4512 Povezava se odpre v novem oknu

Izvleček
In the military, police, security companies, and shooting sports, precision shooting training is of the outmost importance. In order to achieve high shooting accuracy, a lot of training is needed. As a result, trainees use a large number of cartridges and a considerable amount of time of professional trainers, which can cost a lot. Our motivation is to reduce costs and shorten training time by introducing an augmented biofeedback system based on machine learning techniques. We are designing a system that can detect and provide feedback on three types of errors that regularly occur during a precision shooting practice: excessive hand movement error, aiming error and triggering error. The system is designed to provide concurrent feedback on the hand movement error and terminal feedback on the other two errors. Machine learning techniques are used innovatively to identify hand movement errors; the other two errors are identified by the threshold approach. To correct the excessive hand movement error, a precision shot accuracy prediction model based on Random Forest has proven to be the most suitable. The experimental results show that: (1) the proposed Random Forest (RF) model achieves the prediction accuracy of 91.27%, higher than any of the other reference models, and (2) hand movement is strongly related to the accuracy of precision shooting. Appropriate use of the proposed augmented biofeedback system will result in a lower number of rounds used and shorten the precision shooting training process.

Jezik:Angleški jezik
Ključne besede:precision shooting, accuracy prediction model, augmented feedback, random forest
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2020
Št. strani:16 str.
Številčenje:Vol. 20, iss. 16, art. 4512
PID:20.500.12556/RUL-134384 Povezava se odpre v novem oknu
UDK:004:799.3:621.39
ISSN pri članku:1424-8220
DOI:10.3390/s20164512 Povezava se odpre v novem oknu
COBISS.SI-ID:25029123 Povezava se odpre v novem oknu
Datum objave v RUL:12.01.2022
Število ogledov:780
Število prenosov:177
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Sensors
Skrajšan naslov:Sensors
Založnik:MDPI
ISSN:1424-8220
COBISS.SI-ID:10176278 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:12.08.2020

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:natančno streljanje, model napovedovanja točnosti, poudarjena povratna informacija, random forest

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0246
Naslov:ICT4QoL - Informacijsko komunikacijske tehnologije za kakovostno življenje

Financer:Drugi - Drug financer ali več financerjev
Program financ.:National Natural Science Foundation of China, National Development and Reform Commission
Številka projekta:61977006
Naslov:Educational Big Data R&D and its Application

Financer:Drugi - Drug financer ali več financerjev
Program financ.:China, Ministry of Education, Engineering Research Center of Intelligent Technology and Educational Application

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj