On a class of Kirchhoff problems via local mountain pass
ID Ambrosio, Vincenzo (Avtor), ID Repovš, Dušan (Avtor)

 PDF - Predstavitvena datoteka, prenos (635,28 KB)MD5: A97F9CC710E47BD5E9E342FFC2018300 URL - Izvorni URL, za dostop obiščite https://content.iospress.com/articles/asymptotic-analysis/asy201660

Izvleček
In the present work we study the multiplicity and concentration of positive solutions for the following class of Kirchhoff problems: ▫$$\begin{cases}-(\varepsilon^2a+\varepsilon b\int _{\mathbb{R}^3}|\nabla u|^2 dx) \Delta u + V(x)u = f(u)+\gamma u^5 & \text{in} \; \mathbb{R}^3, \\ u \in H^1(\mathbb{R}^3), \quad u>0 & \text{in} \; \mathbb{R}^3, \end{cases}$$▫ where ▫$\varepsilon>0$▫ is a small parameter, ▫$a,b>0$▫ are constants, ▫$\gamma \in {0,1}$▫, ▫$V$▫ is a continuous positive potential with a local minimum, and ▫$f$▫ is a superlinear continuous function with subcritical growth. The main results are obtained through suitable variational and topological arguments. We also provide a multiplicity result for a supercritical version of the above problem by combining a truncation argument with a Moser-type iteration. Our theorems extend and improve in several directions the studies made in (Adv. Nonlinear Stud. 14 (2014), 483-510; J. Differ. Equ. 252 (2012), 1813-1834; J. Differ. Equ. 253 (2012), 2314-2351).

Jezik: Angleški jezik Kirchhoff problems, penalization method, Ljusternik-Schnirelmann theory, critical growth, supercritical exponent Članek v reviji 1.01 - Izvirni znanstveni članek PEF - Pedagoška fakultetaFMF - Fakulteta za matematiko in fiziko 2022 Str. 1-43 Vol. 126, iss.1-2 20.500.12556/RUL-133972 517.951 0921-7134 10.3233/ASY-201660 43614723 21.12.2021 659 882 Kopiraj citat

Naslov: Asymptotic analysis Asymptot. anal. IOS Press 0921-7134 25030144

## Projekti

Financer: ARRS - Agencija za raziskovalno dejavnost Republike Slovenije P1-0292 Topologija, geometrija in nelinearna analiza

Financer: ARRS - Agencija za raziskovalno dejavnost Republike Slovenije N1-0114 Algebrajski odtisi geometrijskih značilnosti v homologiji

Financer: ARRS - Agencija za raziskovalno dejavnost Republike Slovenije N1-0064 Analiza zveznih in diskretnih matematičnih modelov v biologiji, kemiji in genetiki

Financer: ARRS - Agencija za raziskovalno dejavnost Republike Slovenije J1-8131 Zvezni in diskretni sistemi v nelinearni analizi

Nazaj