Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
On a class of Kirchhoff problems via local mountain pass
ID
Ambrosio, Vincenzo
(
Author
),
ID
Repovš, Dušan
(
Author
)
PDF - Presentation file,
Download
(635,28 KB)
MD5: A97F9CC710E47BD5E9E342FFC2018300
URL - Source URL, Visit
https://content.iospress.com/articles/asymptotic-analysis/asy201660
Image galllery
Abstract
In the present work we study the multiplicity and concentration of positive solutions for the following class of Kirchhoff problems: ▫$$\begin{cases}-(\varepsilon^2a+\varepsilon b\int _{\mathbb{R}^3}|\nabla u|^2 dx) \Delta u + V(x)u = f(u)+\gamma u^5 & \text{in} \; \mathbb{R}^3, \\ u \in H^1(\mathbb{R}^3), \quad u>0 & \text{in} \; \mathbb{R}^3, \end{cases}$$▫ where ▫$\varepsilon>0$▫ is a small parameter, ▫$a,b>0$▫ are constants, ▫$\gamma \in {0,1}$▫, ▫$V$▫ is a continuous positive potential with a local minimum, and ▫$f$▫ is a superlinear continuous function with subcritical growth. The main results are obtained through suitable variational and topological arguments. We also provide a multiplicity result for a supercritical version of the above problem by combining a truncation argument with a Moser-type iteration. Our theorems extend and improve in several directions the studies made in (Adv. Nonlinear Stud. 14 (2014), 483-510; J. Differ. Equ. 252 (2012), 1813-1834; J. Differ. Equ. 253 (2012), 2314-2351).
Language:
English
Keywords:
Kirchhoff problems
,
penalization method
,
Ljusternik-Schnirelmann theory
,
critical growth
,
supercritical exponent
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Year:
2022
Number of pages:
Str. 1-43
Numbering:
Vol. 126, iss.1-2
PID:
20.500.12556/RUL-133972
UDC:
517.951
ISSN on article:
0921-7134
DOI:
10.3233/ASY-201660
COBISS.SI-ID:
43614723
Publication date in RUL:
21.12.2021
Views:
882
Downloads:
936
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Asymptotic analysis
Shortened title:
Asymptot. anal.
Publisher:
IOS Press
ISSN:
0921-7134
COBISS.SI-ID:
25030144
Projects
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0292
Name:
Topologija, geometrija in nelinearna analiza
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0114
Name:
Algebrajski odtisi geometrijskih značilnosti v homologiji
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0064
Name:
Analiza zveznih in diskretnih matematičnih modelov v biologiji, kemiji in genetiki
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-8131
Name:
Zvezni in diskretni sistemi v nelinearni analizi
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back