izpis_h1_title_alt

Guided extraction of genome-scale metabolic models for the integration and analysis of omics data
ID Walakira, Andrew (Avtor), ID Rozman, Damjana (Avtor), ID Režen, Tadeja (Avtor), ID Mraz, Miha (Avtor), ID Moškon, Miha (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,95 MB)
MD5: 387CBB2ECEF0F7D3B62A374823E340FD
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S2001037021002476 Povezava se odpre v novem oknu

Izvleček
Omics data can be integrated into a reference model using various model extraction methods (MEMs) to yield context-specific genome-scale metabolic models (GEMs). How to chose the appropriate MEM, thresholding rule and threshold remains a challenge. We integrated mouse transcriptomic data from a Cyp51 knockout mice diet experiment (GSE58271) using five MEMs (GIMME, iMAT, FASTCORE, INIT an tINIT) in a combination with a recently published mouse GEM iMM1865. Except for INIT and tINIT, the size of extracted models varied with the MEM used (t-test: p-value <0.001). The Jaccard index of iMAT models ranged from 0.27 to 1.0. Out of the three factors under study in the experiment (diet, gender and genotype), gender explained most of the variability (>90%) in PC1 for FASTCORE. In iMAT, each of the three factors explained less than 40% of the variability within PC1, PC2 and PC3. Among all the MEMs, FASTCORE captured the most of the true variability in the data by clustering samples by gender. Our results show that for the efficient use of MEMs in the context of omics data integration and analysis, one should apply various MEMs, thresholding rules, and thresholding values to select the MEM and its configuration that best captures the true variability in the data. This selection can be guided by the methodology as proposed and used in this paper. Moreover, we describe certain approaches that can be used to analyse the results obtained with the selected MEM and to put these results in a biological context.

Jezik:Angleški jezik
Ključne besede:genome-scale metabolic model, model extraction methods, context-specific metabolic model, omics data integration, subsystem enrichment analysis, model interpretability
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:MF - Medicinska fakulteta
FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2021
Št. strani:Str. 3521-3530
Številčenje:Vol. 19
PID:20.500.12556/RUL-127776 Povezava se odpre v novem oknu
UDK:004:575.112
ISSN pri članku:2001-0370
DOI:10.1016/j.csbj.2021.06.009 Povezava se odpre v novem oknu
COBISS.SI-ID:66227971 Povezava se odpre v novem oknu
Datum objave v RUL:22.06.2021
Število ogledov:2016
Število prenosov:247
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Computational and structural biotechnology journal
Založnik:Elsevier, Research Network of Computational and Structural Biotechnology
ISSN:2001-0370
COBISS.SI-ID:5068826 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:metabolni modeli na nivoju genoma, ekstrakcija modelov, kontekstno specifični metabolni modeli, integracija omskih podatkov, analiza obogatitve metabolnih podsistemov

Projekti

Financer:EC - European Commission
Program financ.:H2020
Številka projekta:860895
Naslov:Translational SYStemics: Personalised Medicine at the Interface of Translational Research and Systems Medicine
Akronim:TranSYS

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0359
Naslov:Vseprisotno računalništvo

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P1-0390
Naslov:Funkcijska genomika in biotehnologija za zdravje

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J1-9176
Naslov:HolesteROR pri presnovnih boleznih jeter

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj