Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Deep learning for detection of visible land boundaries from UAV imagery
ID
Fetai, Bujar
(
Avtor
),
ID
Račič, Matej
(
Avtor
),
ID
Lisec, Anka
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(4,43 MB)
MD5: D5D99BF88697BAF6F4DEDCA70DAF81C0
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2072-4292/13/11/2077
Galerija slik
Izvleček
Current efforts aim to accelerate cadastral mapping through innovative and automated approaches and can be used to both create and update cadastral maps. This research aims to automate the detection of visible land boundaries from unmanned aerial vehicle (UAV) imagery using deep learning. In addition, we wanted to evaluate the advantages and disadvantages of programming-based deep learning compared to commercial software-based deep learning. For the first case, we used the convolutional neural network U-Net, implemented in Keras, written in Python using the TensorFlow library. For commercial software-based deep learning, we used ENVINet5. UAV imageries from different areas were used to train the U-Net model, which was performed in Google Collaboratory and tested in the study area in Odranci, Slovenia. The results were compared with the results of ENVINet5 using the same datasets. The results showed that both models achieved an overall accuracy of over 95%. The high accuracy is due to the problem of unbalanced classes, which is usually present in boundary detection tasks. U-Net provided a recall of 0.35 and a precision of 0.68 when the threshold was set to 0.5. A threshold can be viewed as a tool for filtering predicted boundary maps and balancing recall and precision. For equitable comparison with ENVINet5, the threshold was increased. U-Net provided more balanced results, a recall of 0.65 and a precision of 0.41, compared to ENVINet5 recall of 0.84 and a precision of 0.35. Programming-based deep learning provides a more flexible yet complex approach to boundary mapping than software-based, which is rigid and does not require programming. The predicted visible land boundaries can be used both to speed up the creation of cadastral maps and to automate the revision of existing cadastral maps and define areas where updates are needed. The predicted boundaries cannot be considered final at this stage but can be used as preliminary cadastral boundaries.
Jezik:
Angleški jezik
Ključne besede:
geodesy
,
land
,
cadastral mapping
,
visible boundary
,
UAV
,
deep learning
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FGG - Fakulteta za gradbeništvo in geodezijo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2021
Št. strani:
19 str.
Številčenje:
Vol. 13, iss. 11, art. 2077
PID:
20.500.12556/RUL-127288
UDK:
528
ISSN pri članku:
2072-4292
DOI:
10.3390/rs13112077
COBISS.SI-ID:
64902403
Datum objave v RUL:
02.06.2021
Število ogledov:
1070
Število prenosov:
238
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Remote sensing
Skrajšan naslov:
Remote sens.
Založnik:
MDPI
ISSN:
2072-4292
COBISS.SI-ID:
32345133
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
01.06.2021
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
geodezija
,
zemljišče
,
katastrska izmera
,
vidne meje
,
UAV
,
globoko učenje
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0406
Naslov:
Opazovanje Zemlje in geoinformatika
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
V2-1934
Naslov:
Ovrednotenje različnih načinov označitve katastrskih mejnikov za fotogrametrično izmero z letalnikom in analiza njihovega vpliva na položajno točnost oblaka točk in ortofota
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj