Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Time series clustering of online gambling activities for addicted users' detection
ID
Peres, Fernando
(
Avtor
),
ID
Fallacara, Enrico
(
Avtor
),
ID
Manzoni, Luca
(
Avtor
),
ID
Castelli, Mauro
(
Avtor
),
ID
Popovič, Aleš
(
Avtor
),
ID
Rodrigues, Miguel
(
Avtor
),
ID
Estevens, Pedro
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(4,20 MB)
MD5: D3E9CEDDAF45225A49282344376C2C02
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2076-3417/11/5/2397
Galerija slik
Izvleček
Ever since the worldwide demand for gambling services started to spread, its expansion has continued steadily. To wit, online gambling is a major industry in every European country, generating billions of Euros in revenue for commercial actors and governments alike. Despite such evidently beneficial effects, online gambling is ultimately a vast social experiment with potentially disastrous social and personal consequences that could result in an overall deterioration of social and familial relationships. Despite the relevance of this problem in society, there is a lack of tools for characterizing the behavior of online gamblers based on the data that are collected daily by betting platforms. This paper uses a time series clustering algorithm that can help decision-makers in identifying behaviors associated with potential pathological gamblers. In particular, experimental results obtained by analyzing sports event bets and black jack data demonstrate the suitability of the proposed method in detecting critical (i.e., pathological) players. This algorithm is the first component of a system developed in collaboration with the Portuguese authority for the control of betting activities.
Jezik:
Angleški jezik
Ključne besede:
human behavior modeling
,
online gambling
,
machine learning
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
EF - Ekonomska fakulteta
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2021
Št. strani:
31 str.
Številčenje:
Vol. 11, iss. 5, art. 2397
PID:
20.500.12556/RUL-125334
UDK:
004:78
ISSN pri članku:
2076-3417
DOI:
10.3390/app11052397
COBISS.SI-ID:
54522627
Datum objave v RUL:
11.03.2021
Število ogledov:
1143
Število prenosov:
250
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Applied sciences
Skrajšan naslov:
Appl. sci.
Založnik:
MDPI
ISSN:
2076-3417
COBISS.SI-ID:
522979353
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
08.03.2021
Projekti
Financer:
FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:
DSAIPA/DS/0022/2018
Akronim:
GADgET
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P5-0410
Naslov:
Digitalizacija kot gonilo trajnostnega razvoja posameznika, organizacij in družbe
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj