izpis_h1_title_alt

Condition classification of heating systems valves based on acoustic features and machine learning
Potočnik, Primož (Avtor), Olmos Lopez-Roso, Borja (Avtor), Vodopivec, Lučka (Avtor), Susič, Egon (Avtor), Govekar, Edvard (Avtor)

.pdfPDF - Predstavitvena datoteka. Vsebina dokumenta nedostopna do 03.11.2022.
MD5: 6DB44FF7829931A30E2E94920943F82A
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0003682X20308409?via%3Dihub Povezava se odpre v novem oknu

Izvleček
The quality and condition of valves installed in district heating systems can be reflected by the soundsemitted. In this paper, a framework for a systematic approach towards the classification of valve soundsis proposed, based on acoustic features and machine learning models. The methods include the extractionof spectral and psychoacoustic features, alongside the application of a wrapper-based feature selectionmethod which, when combined with machine learning models, simultaneously selects the most informa-tive features and builds optimal classification models. The maximal balanced classification rate (BCR) wasused as the optimisation criterion in this study. Results demonstrate that the specific valve conditions canbe correctly classified with a high BCR as follows: cavitation BCR = 1, whistling BCR = 0.978, and rattlingBCR = 1. The proposed framework for a wrapper-based selection of informative features and correspond-ing machine learning models confirms the usefulness of psychoacoustic features and machine learningmodels for the classification of valve conditions. The proposed framework is, however, general and canbe applied to various acoustic-based industrial condition monitoring challenges.

Jezik:Angleški jezik
Ključne besede:valves, district heating, acoustic features, feature selection, classification, machine learning
Vrsta gradiva:Članek v reviji (dk_c)
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Leto izida:2020
Št. strani:Str. 1-9
Številčenje:Vol. 174
UDK:628.8:534(045)
ISSN pri članku:0003-682X
DOI:10.1016/j.apacoust.2020.107736 Povezava se odpre v novem oknu
COBISS.SI-ID:35370243 Povezava se odpre v novem oknu
Število ogledov:315
Število prenosov:96
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
 
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
:
Objavi na:AddThis
AddThis uporablja piškotke, za katere potrebujemo vaše privoljenje.
Uredi privoljenje...

Gradivo je del revije

Naslov:Applied acoustics
Skrajšan naslov:Appl. Acoust.
Založnik:Elsevier Science
ISSN:0003-682X
COBISS.SI-ID:24982016 Povezava se odpre v novem oknu

Gradivo je financirano iz projekta

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije (ARRS)
Številka projekta:P2-0241
Naslov:Sinergetika kompleksnih sistemov in procesov

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:ventili, daljinsko ogrevanje, akustične značilke, izbira značilk, razvrščanje, strojno učenje

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj