izpis_h1_title_alt

Upravljanje kvadrokopterja z gestami
ŠINKEC, MIHAEL (Avtor), Skočaj, Danijel (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (11,52 MB)
MD5: 3FA8FAEA6BC172FEEA9390421D8F4909

Izvleček
Cilj diplomske naloge je razviti rešitev za usmerjanje kvadrokopterja s pomočjo telesnih gest. Rešitev smo implementirali v obliki mobilne aplikacije za operacijski sistem Android. Uporabili smo kvadrokopter podjetja Ryze Robotics, ki ponuja omrežni vmesnik, preko katerega ga je možno usmerjati ter pridobivati video tok iz njegove vgrajene kamere. Naša implementacija je strukturirana kot zaprta zanka, ki je zgrajena iz treh zaporednih faz oz.\ modulov --- dekodiranja in pretvorbe slike v ustrezen format, ocene poze telesa ter klasifikacije geste. Na podlagi rezultata tega cevovoda se določi akcija za kvadrokopter, ki jo mora ta izvesti. Delovanje končne rešitve smo evalvirali z merjenjem latenc posameznega dela zanke, kot tudi empirično na dejanskih primerih ukazovanja z gestami. Pokazali smo, da je naš sistem zmožen upravljanja kvadrokopterja v praksi. Izpostavili smo posamezne težave, za katere smo predlagali možne rešitve. Prvi tip težav se pojavi zaradi raznih nejasnosti na vhodnih slikah. Te so rešljive s predprocesiranjem slike. Ostale težave so povezane z arhitekturo modela za klasifikacijo gest, ki ni optimalna za naš problem.

Jezik:Slovenski jezik
Ključne besede:kvadrokopter, geste, računaniški vid, mobilna aplikacija, robotika, strojno učenje
Vrsta gradiva:Diplomsko delo/naloga (mb11)
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2020
COBISS.SI-ID:31566339 Povezava se odpre v novem oknu
Število ogledov:204
Število prenosov:68
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
 
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
:
Objavi na:AddThis
AddThis uporablja piškotke, za katere potrebujemo vaše privoljenje.
Uredi privoljenje...

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Drone control using gestures
Izvleček:
The goal of this thesis is to develop a solution for controlling a drone by using body gestures. We developed the solution in the form of a mobile application for Android devices. We used a Tello drone, produced by the company Ryze Robotics. This drone offers a network interface for receiving commands. It also has a built-in camera for capturing a video feed, which can be streamed to a connected device. Our implementation is structured as a closed loop, which contains three consecutive phases or modules. These are image decoding, pose estimation and gesture classification. Based on the results of the gesture classifier, a command is defined and issued to the drone. We evaluated the analyzed system by measuring latencies across modules of the loop and also by using empirical methods on actual examples of controlling the drone with gestures. We demonstrated, that our is able to function properly in practice. At the end we expose current issues of our solution and suggest possible improvements. The first group of issues occur because of ambiguities in the input images. These can be resolved by preprocessing the image. The other issues are related to the gesture classifiers architecture, which is not optimal for our problem.

Ključne besede:drone, gestures, computer vision, mobile application, robotics, machine learning

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj