izpis_h1_title_alt

Process parameters for FFF 3D-printed conductors for applications in sensors
ID Barši Palmić, Tibor (Avtor), ID Slavič, Janko (Avtor), ID Boltežar, Miha (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (24,84 MB)
MD5: 5550B59AD7275D103A2DC51A755FBBCB
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/1424-8220/20/16/4542 Povezava se odpre v novem oknu

Izvleček
With recent developments in additive manufacturing (AM), new possibilities for fabricating smart structures have emerged. Recently, single-process fused-filament fabrication (FFF) sensors for dynamic mechanical quantities have been presented. Sensors measuring dynamic mechanical quantities, like strain, force, and acceleration, typically require conductive filaments with a relatively high electrical resistivity. For fully embedded sensors in single-process FFF dynamic structures, the connecting electrical wires also need to be printed. In contrast to the sensors, the connecting electrical wires have to have a relatively low resistivity, which is limited by the availability of highly conductive FFF materials and FFF process conditions. This study looks at the Electrifi filament for applications in printed electrical conductors. The effect of the printing-process parameters on the electrical performance is thoroughly investigated (six parameters, >40 parameter values, >200 conductive samples) to find the highest conductivity of the printed conductors. In addition, conductor embedding and post-printing heating of the conductive material are researched. The experimental results helped us to understand the mechanisms of the conductive network's formation and its degradation. With the insight gained, the optimal printing strategy resulted in a resistivity that was approx. 40% lower than the nominal value of the filament. With a new insight into the electrical behavior of the conductive material, process optimizations and new design strategies can be implemented for the single-process FFF of functional smart structures.

Jezik:Angleški jezik
Ključne besede:additive manufacturing, material extrusion, fused-filament fabrication, polymer nanocomposite, process parameters, conductive filament
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2020
Št. strani:21 str.
Številčenje:Vol. 20, iss. 16, art. 4542
PID:20.500.12556/RUL-118075 Povezava se odpre v novem oknu
UDK:621.9.04 (045)
ISSN pri članku:1424-8220
DOI:10.3390/s20164542 Povezava se odpre v novem oknu
COBISS.SI-ID:25461251 Povezava se odpre v novem oknu
Datum objave v RUL:18.08.2020
Število ogledov:1664
Število prenosov:626
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Sensors
Skrajšan naslov:Sensors
Založnik:MDPI
ISSN:1424-8220
COBISS.SI-ID:10176278 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:13.08.2020

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:aditivne tehnologije, 3d tisk z ekstruzijo materiala, polimerni nanokompoziti, procesni parametri, prevodni filamenti

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0263
Naslov:Mehanika v tehniki

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J2-1730
Naslov:Polno zaznavanje prostorskih vibracij s hitro kamero z aplikacijami v digitalnih dvojčkih in oddaljenem zaznavanju

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj