Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Statistical functions used for spatial modelling due to assessment of landslide distribution and landscape-interaction factors in Iran
ID
Pourghasemi, Hamid Reza
(
Avtor
),
ID
Kariminejad, Narges
(
Avtor
),
ID
Gayen, Amiya
(
Avtor
),
ID
Komac, Marko
(
Avtor
)
URL - Izvorni URL, za dostop obiščite
https://doi.org/10.1016/j.gsf.2019.11.005
Galerija slik
Izvleček
Landslides influence the capacity for safe and sustainable development of mountainous environments. This study explores the spatial distribution of and the interactions between landslides that are mapped using global positioning system (GPS) and extensive field surveys in Mazandaran Province, Iran. Point-pattern assessment is undertaken using several univariate summary statistical functions, including pair correlation, spherical-contact distribution, nearest-neighbor analysis, and O-ring analysis, as well as bivariate summary statistics, and a mark-correlation function. The maximum entropy method was applied to prioritize the factors controlling the incidence of landslides and the landslides susceptibility map. The validation processes were considered for separated 30% data applying the ROC curves, fourfold plot, and Cohens kappa index. The results show that pair correlation and O-ring analyses satisfactorily predicted landslides at scales from 1 to 150 m. At smaller scales, from 150 to 400 m, landslides were randomly distributed. The nearest-neighbor distribution function show that the highest distance to the nearest landslide occurred in the 355 m. The spherical-contact distribution revealed that the patterns were random up to a spatial scale of 80 m. The bivariate correlation functions revealed that landslides were positively linked to several linear features (including faults, roads, and rivers) at all spatial scales. The mark-correlation function showed that aggregated fields of landslides were positively correlated with measures of land use, lithology, drainage density, plan curvature, and aspect, when the numbers of landslides in the groups were greater than the overall average aggregation. The results of analysis of factor importance have showed that elevation (topography map scale: 1:25,000), distance to roads, and distance to rivers are the most important factors in the occurrence of landslides. The susceptibility model of landslides indicates an excellent accuracy, i.e., the AUC value of landslides was 0.860. The susceptibility map of landslides analyzed has shown that 35% of the area is low susceptible to landslides.
Jezik:
Angleški jezik
Ključne besede:
landslide
,
spatial point pattern
,
summary statistic
,
GIS
,
Iran
Vrsta gradiva:
Znanstveno delo
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FGG - Fakulteta za gradbeništvo in geodezijo
Status publikacije:
V tisku
Različica publikacije:
Objavljena publikacija
Leto izida:
2019
Št. strani:
Str. 1-13
Številčenje:
Ilustr.
PID:
20.500.12556/RUL-116761
UDK:
55
ISSN pri članku:
1674-9871
DOI:
10.1016/j.gsf.2019.11.005
COBISS.SI-ID:
9109345
Datum objave v RUL:
08.06.2020
Število ogledov:
1076
Število prenosov:
178
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Geoscience frontiers
Skrajšan naslov:
Geosci. front.
Založnik:
China University of Geosciences, production and hosting by Elsevier
ISSN:
1674-9871
COBISS.SI-ID:
33234477
Licence
Licenca:
CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:
Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.
Začetek licenciranja:
08.06.2020
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
zemeljski plaz
,
prostorski vzorci
,
sumarna statistika
,
GIS
,
Iran
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
0792-022
Naslov:
Raziskovalni inštitut za geo in hidro tveganja/RIGHT
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj