izpis_h1_title_alt

Anti-Ramseyeva števila : magistrsko delo
ID Zmazek, Eva (Avtor), ID Klavžar, Sandi (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (712,15 KB)
MD5: 85F3E20897C9FCA314CAFFBA04535A8B

Izvleček
Barvanje povezav $c$ grafa $G$ je mavrica, če poljubni različni povezavi grafa $G$ pri barvanju $c$ prejmeta različni barvi. Anti-Ramsejevo število $\text{ar}(G,H)$ urejenega para enostavnih grafov $G$ in $H$ je najmanjše naravno število $r$, pri katerem za vsako $r$-barvanje povezav $c$ grafa $G$ z natanko $r$ barvami obstaja $H$-podgraf, za katerega je zožitev $c|H$ mavrica. Za nekatere pare grafov znamo določiti točne vrednosti anti-Ramseyevih števil. Pokažemo na primer lahko, da je anti-Ramseyevo število $\text{ar}(K_n,P_4)$ na paru grafov $K_n$ in $P_4$ enako $4$, če je $n=4$, in je enako $2$, če je $n \geq 5$. Kljub temu, da imata grafa $P_4$ in $C_3$ enako število povezav, se anti-Ramseyevi števili $\text{ar}(K_n,P_4)$ in $\text{ar}(K_n,C_3)$ zelo razlikujeta. Anti-Ramseyevo število $\text{ar}(K_n,C_3)$ je namreč enako številu $n$ vozlišč grafa $K_n$. Anti-Ramseyevo število znamo natančno določiti tudi na paru hiperkock $Q_n$ in $Q_{n-1}$. To je pri $n=3,4,5$ le za $3$, pri $n \geq 6$ pa le za $2$ manjše od števila povezav grafa $Q_n$.

Jezik:Slovenski jezik
Ključne besede:barvanje povezav, mavrica, anti-Ramseyevo število, hiperkocka
Vrsta gradiva:Magistrsko delo/naloga
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2020
PID:20.500.12556/RUL-114687 Povezava se odpre v novem oknu
UDK:519.1
COBISS.SI-ID:18938457 Povezava se odpre v novem oknu
Datum objave v RUL:05.03.2020
Število ogledov:952
Število prenosov:242
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Anti-Ramsey numbers
Izvleček:
An edge coloring $c: E(G) \to [k]$ of a graph $G$ is called a rainbow if all of its edges are colored with different colors. An Anti-Ramsey number $\text{ar}(G,H)$ for an ordered pair of graphs $G$ and $H$ is the smallest number $r$ such that for every edge coloring $c$ of $G$ with exactly $r$ colors, there exists an $H$-subgraph of $G$ such that the coloring $c$ on $H$ is a rainbow. We determine exact values of the anti-Ramsey numbers for some particular pairs of graphs. For example, we show that the exact value of the anti-Ramsey number $\text{ar}(K_n,P_4)$ for a pair of graphs $K_n$ and $P_4$ is equal to $4$ if $n=4$, and is equal to $2$ if $n \geq 5$. Even though the graphs $P_4$ and $C_3$ have the same number of edges, the anti-Ramsey numbers $\text{ar}(K_n,P_4)$ and $\text{ar}(K_n,C_3)$ differ significantly. This is because the anti-Ramsey number $\text{ar}(K_n,C_3)$ is equal to the number $n$ of vertices in $K_n$. We also determine the exact value of the anti-Ramsey number for a pair of hypercubes $Q_n$ and $Q_{n-1}$. It turns out that when $n=3,4$ or $5$, the anti-Ramsey number $\text{ar}(Q_n,Q_{n-1})$ is smaller than the number of edges in graph $Q_n$ by $3$, and in case when $n \geq 6$ it is smaller by $2$.

Ključne besede:edge coloring, rainbow, anti-Ramsey number, hypercube

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj