Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Časovno pogojen priporočilni sistem za oglaševanje
ID
Šušteršič, Jan
(
Author
),
ID
Bosnić, Zoran
(
Mentor
)
More about this mentor...
,
ID
Košir, Domen
(
Comentor
)
PDF - Presentation file,
Download
(2,40 MB)
MD5: 6BA539681A52DE3741BBB734B0644FDC
Image galllery
Abstract
V zadnjih dveh desetletjih se je zaradi velike porasti uporabe interneta zelo razširilo spletno oglaševanje, kjer je eden izmed največkrat uporabljenih pokazateljev uspešnosti stopnja interakcije oglasov, ki je odvisna od številnih dejavnikov. V diplomski nalogi se osredotočamo na napovedovanje stopnje interakcije z oglasi z uporabo priporočilnih sistemov, ki temeljijo na matrični faktorizaciji. Pri tem poskušamo napovedi osnovne matrične faktorizacije izboljšati z upoštevanjem časovnih podatkov o uri in datumu, iz katerih lahko razberemo starost zapisa in kontekst, v katerem je bil ta zabeležen. Zgrajen časovno pogojeni priporočilni sistem primerjamo s statičnimi modeli in analiziramo stopnjo izboljšanja. Rezultati so pokazali, da z uporabo podatkov o starosti zapisov na dani množici podatkov konsistentno izboljšamo napovedi, medtem ko uporaba kontekstnih podatkov pripelje do slabših rezultatov in zahteva nadaljnje raziskave.
Language:
Slovenian
Keywords:
oglaševanje
,
priporočilni sistemi
,
matrična faktorizacija
,
čas
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2020
PID:
20.500.12556/RUL-114395
COBISS.SI-ID:
1538539459
Publication date in RUL:
26.02.2020
Views:
1637
Downloads:
275
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Time aware recommender system for advertising
Abstract:
Due to the vast increase in the usage of internet in the past two decades there has been a major increase in the popularity of online advertising where one of the most widely used success indicators is ad interaction rate which depends upon multiple factors. The thesis focuses on predicting ad interaction rate with the use of recommender systems that are based on matrix factorization. We try to improve the basic matrix factorization by incorporating time data such as age and context into our recommendations. We then compare the time-aware recommender system with its more basic counterpart and analyse performance improvements. Results show that the use of information such as age can consistently improve recommendations on our dataset. Context information however, produces worse results and requires further research.
Keywords:
advertisement
,
recommender systems
,
matrix factorization
,
time
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back