izpis_h1_title_alt

Časovno pogojen priporočilni sistem za oglaševanje
ID Šušteršič, Jan (Avtor), ID Bosnić, Zoran (Mentor) Več o mentorju... Povezava se odpre v novem oknu, ID Košir, Domen (Komentor)

.pdfPDF - Predstavitvena datoteka, prenos (2,40 MB)
MD5: 6BA539681A52DE3741BBB734B0644FDC

Izvleček
V zadnjih dveh desetletjih se je zaradi velike porasti uporabe interneta zelo razširilo spletno oglaševanje, kjer je eden izmed največkrat uporabljenih pokazateljev uspešnosti stopnja interakcije oglasov, ki je odvisna od številnih dejavnikov. V diplomski nalogi se osredotočamo na napovedovanje stopnje interakcije z oglasi z uporabo priporočilnih sistemov, ki temeljijo na matrični faktorizaciji. Pri tem poskušamo napovedi osnovne matrične faktorizacije izboljšati z upoštevanjem časovnih podatkov o uri in datumu, iz katerih lahko razberemo starost zapisa in kontekst, v katerem je bil ta zabeležen. Zgrajen časovno pogojeni priporočilni sistem primerjamo s statičnimi modeli in analiziramo stopnjo izboljšanja. Rezultati so pokazali, da z uporabo podatkov o starosti zapisov na dani množici podatkov konsistentno izboljšamo napovedi, medtem ko uporaba kontekstnih podatkov pripelje do slabših rezultatov in zahteva nadaljnje raziskave.

Jezik:Slovenski jezik
Ključne besede:oglaševanje, priporočilni sistemi, matrična faktorizacija, čas
Vrsta gradiva:Diplomsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2020
PID:20.500.12556/RUL-114395 Povezava se odpre v novem oknu
COBISS.SI-ID:1538539459 Povezava se odpre v novem oknu
Datum objave v RUL:26.02.2020
Število ogledov:1649
Število prenosov:275
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Time aware recommender system for advertising
Izvleček:
Due to the vast increase in the usage of internet in the past two decades there has been a major increase in the popularity of online advertising where one of the most widely used success indicators is ad interaction rate which depends upon multiple factors. The thesis focuses on predicting ad interaction rate with the use of recommender systems that are based on matrix factorization. We try to improve the basic matrix factorization by incorporating time data such as age and context into our recommendations. We then compare the time-aware recommender system with its more basic counterpart and analyse performance improvements. Results show that the use of information such as age can consistently improve recommendations on our dataset. Context information however, produces worse results and requires further research.

Ključne besede:advertisement, recommender systems, matrix factorization, time

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj