Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Detekcija objektov na vodni gladini na podlagi zaznavanja anomalij
ID
KALŠAN, DAMJAN
(
Avtor
),
ID
Kristan, Matej
(
Mentor
)
Več o mentorju...
PDF - Predstavitvena datoteka,
prenos
(6,25 MB)
MD5: 38498EE2B474A201ECBF1C7417A76DBD
Galerija slik
Izvleček
Zaznavanje ovir v avtonomnih sistemih je ključnega pomena za primeren odziv na nepredvidljive okoliščine. Na pomorski domeni so se v preteklosti raziskovalci detekcije lotili z uporabo različnih senzorjev in pogosto omenili smiselnost uporabe naprednih tehnik računalniškega vida. Zaradi neskončnega števila možnih ovir v tej nalogi problem obravnavamo v kontekstu detekcije anomalij. Tovrstne izbrane klasične metode delujejo na osnovi arhitekture koder-dekoder in se poslužujejo polnadzorovanega učenja nad slikami brez anomalij. V diplomski nalogi jih najprej primerno nadgradimo tako, da so se sposobne učiti tudi iz slik z anomalijami in nato njihovo delovanje preverimo na pomorski domeni. Za ta namen predlagamo dve prilagojeni cenilni funkciji, ki strmita k maksimizaciji rekonstrukcijske napake anomalij in minimizaciji napake morja. Predlagamo konvolucijsko nevronsko mrežo, ki na podlagi napake rekonstrukcije napoveduje segmentacijsko masko in v okviru nje primerjamo predlagani cenilni funkciji na štirih podatkovnih zbirkah. Predlagane metode se lahko uporabljajo tako na razburkani, kot tudi mirni vodni površini, vendar so zanje značilne pogoste fantomske detekcije ovir, ki za sedaj omejujejo njihovo uporabo v avtonomnem sistemu. Kljub temu metode delujejo neodvisno od bližine obale ali velikih objektov.
Jezik:
Slovenski jezik
Ključne besede:
avtonomna plovila
,
konvolucijske nevronske mreže
,
detekcija anomalij
,
semantična segmentacija
,
strojno učenje
Vrsta gradiva:
Diplomsko delo/naloga
Tipologija:
2.11 - Diplomsko delo
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Leto izida:
2019
PID:
20.500.12556/RUL-111811
COBISS.SI-ID:
1538422211
Datum objave v RUL:
14.10.2019
Število ogledov:
1812
Število prenosov:
301
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Sekundarni jezik
Jezik:
Angleški jezik
Naslov:
Object detection on water surface by anomaly detection
Izvleček:
Obstacle detection in autonomous systems is of key importance for an appropriate response to unpredictable circumstances. A great portion of object detection research in the maritime domain so far has employed different sensors and concluded that there is a need for advanced computer vision techniques. Due to an infinite number of potential obstacles we focused on reconstruction based anomaly detection methods which utilize autoencoders for semi-supervised learning on nonanomalous images. We have assessed these methods in the maritime domain and upgraded them in a way that they are also able to learn from anomalous images. In this paper we propose two modified loss functions which strive to maximize the reconstruction error of anomalies and minimize the error introduced by the sea. We also propose a convolutional neural network which predicts a segmentation mask based on the reconstruction error using the aforementioned loss functions and test it on four different datasets. The proposed methods can be used in the case of an agitated as well as the calm sea, however due to a high number of false detections they are not yet fit for use in an autonomous system. Nonetheless the methods work in the proximity of the shore and large objects.
Ključne besede:
autonomous surface vehicles
,
convolutional neural networks
,
anomaly detection
,
semantic segmentation
,
machine learning
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj