Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Extension of REBMIX algorithm to von Mises parametric family for modeling joint distribution of wind speed and direction
ID
Ye, X. W.
(
Avtor
),
ID
Xi, P. S.
(
Avtor
),
ID
Nagode, Marko
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(2,59 MB)
MD5: EBCF2F36FEA4CCB681EB0AE57877E8A6
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S0141029618303584?via%3Dihub#!
Galerija slik
Izvleček
A statistical analysis of the wind speed and wind direction serves as a solid foundation for the wind-induced vibration analysis. The probabilistic modeling of wind speed and direction can effectively characterize the stochastic properties of wind field. The joint distribution model of wind speed and direction involves a circular distribution and has a multimodal characteristic. In this paper, the finite mixture distribution model is introduced and used to represent the joint distribution model that is comprised of the mixture Weibull distributions and von Mises distributions. An extended parameters estimation algorithm for multivariate and multimodal circular distributions is proposed to construct the joint distribution model. The proposed algorithm estimates the component parameters, mixture weight of each component and the number of components successively by an iterative process. The major improvement is accomplished by adding a circular distribution model. The effectiveness of the proposed algorithm is verified with numerical simulations and one-year field monitoring data and compared with the expectation maximization algorithm-based angular-linear approach in terms of the Akaike%s information criterion and computing time. The results indicate that the finite mixture model represents the joint distribution model of wind speed and direction well and that the proposed algorithm has a good and time-saving performance in parameter estimation for multivariate and multimodal models.
Jezik:
Angleški jezik
Ključne besede:
structural health monitoring
,
wind field characteristics
,
joint probability density function
,
mixture estimation
,
REBMIX algorithm
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Recenzirani rokopis
Leto izida:
2019
Št. strani:
Str. 1134-1145
Številčenje:
Vol. 183
PID:
20.500.12556/RUL-106626
UDK:
519.2(045)
ISSN pri članku:
0141-0296
DOI:
10.1016/j.engstruct.2018.08.035
COBISS.SI-ID:
16469019
Datum objave v RUL:
08.03.2019
Število ogledov:
1726
Število prenosov:
538
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Engineering structures
Skrajšan naslov:
Eng. struct.
Založnik:
Elsevier
ISSN:
0141-0296
COBISS.SI-ID:
7750666
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
spremljanja stanja strukture
,
značilnosti polja vetra
,
povezana gostota porazdelitve verjetnosti
,
ocenjevanje mešanih porazdelitev
,
REBMIX algoritem
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0182
Naslov:
Razvojna vrednotenja
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj