Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Semi-supervised vibration-based classification and condition monitoring of compressors
ID
Potočnik, Primož
(
Avtor
),
ID
Govekar, Edvard
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(4,67 MB)
MD5: 0399335A62D12EAE9C1D19B998EB2A82
URL - Izvorni URL, za dostop obiščite
http://www.sciencedirect.com/science/article/pii/S088832701730047X
Galerija slik
Izvleček
Semi-supervised vibration-based classification and condition monitoring of the reciprocating compressors installed in refrigeration appliances is proposed in this paper. The method addresses the problem of industrial condition monitoring where prior class definitions are often not available or difficult to obtain from local experts. The proposed method combines feature extraction, principal component analysis, and statistical analysis for the extraction of initial class representatives, and compares the capability of various classification methods, including discriminant analysis (DA), neural networks (NN), support vector machines (SVM), and extreme learning machines (ELM). The use of the method is demonstrated on a case study which was based on industrially acquired vibration measurements of reciprocating compressors during the production of refrigeration appliances. The paper presents a comparative qualitative analysis of the applied classifiers, confirming the good performance of several nonlinear classifiers. If the model parameters are properly selected, then very good classification performance can be obtained from NN trained by Bayesian regularization, SVM and ELM classifiers. The method can be effectively applied for the industrial condition monitoring of compressors.
Jezik:
Angleški jezik
Ključne besede:
condition monitoring
,
reciprocating compressors
,
classification
,
semi-supervised
,
neural networks
,
extreme learning machines
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Recenzirani rokopis
Leto izida:
2017
Št. strani:
Str. 51-65
Številčenje:
Vol. 93
PID:
20.500.12556/RUL-106541
UDK:
519.7:004.032.26:007(045)
ISSN pri članku:
0888-3270
DOI:
10.1016/j.ymssp.2017.01.048
COBISS.SI-ID:
15296539
Datum objave v RUL:
04.03.2019
Število ogledov:
1342
Število prenosov:
923
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Mechanical systems and signal processing
Skrajšan naslov:
Mech. syst. signal process.
Založnik:
Elsevier
ISSN:
0888-3270
COBISS.SI-ID:
169243
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
spremljanje stanja
,
batni kompresorji
,
razvrščanje
,
delno-nadzorovano
,
nevronske mreže
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0241
Naslov:
Sinergetika kompleksnih sistemov in procesov
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj