
2. Double phase transonic flow problems with variable growth: nonlinear patterns and stationary wavesAnouar Bahrouni, Vicenţiu Rǎdulescu, Dušan Repovš, 2019, original scientific article Keywords: BaouendiGrushin operator, CaffarelliKohnNirenberg inequality, transonic flow, nonlinear eigenvalue problem, variable exponent Full text (file, 605,61 KB) 

4. Existence and multiplicity results for a new ▫$p(x)$▫Kirchhoff problemMohamed Karim Hamdani, Abdellaziz Harrabi, Foued Mtiri, Dušan Repovš, 2020, original scientific article Keywords: variable exponent, nonlocal Kirchhoff equation, p(x)Laplacian operator, PalaisSmale condition, Mountain Pass theorem, Fountain theorem Full text (file, 449,99 KB) 
5. Nonhomogeneous Dirichlet problems without the AmbrosettiRabinowitz conditionGang Li, Vicenţiu Rǎdulescu, Dušan Repovš, Qihu Zhang, 2018, original scientific article Keywords: nonhomogeneous differential operator, AmbrosettiRabinowitz condition, Cerami compactness condition, Sobolev space with variable exponent Full text (file, 660,08 KB) 
6. On a ▫$p(\cdot)$▫biharmonic problem with noflux boundary conditionMariaMagdalena Boureanu, Vicenţiu Rǎdulescu, Dušan Repovš, 2016, original scientific article Keywords: variable exponent, new variable exponent subspace, ▫$p(\cdot)$▫biharmonic operator, nonlinear elliptic problem, weak solutions, existence, multiplicity Full text (file, 692,01 KB) 

8. Existence of solutions for systems arising in electromagnetismMohamed Karim Hamdani, Dušan Repovš, 2020, original scientific article Keywords: variable exponent, p(x)curl system, Palais Smale compactness condition, Fountain theorem, Dual Fountain theorem, existence of solutions, multiplicity of solutions, electromagnetism Full text (file, 770,92 KB) 
9. Anisotropic equations with indefinite potential and competing nonlinearitiesNikolaos Papageorgiou, Vicenţiu Rǎdulescu, Dušan Repovš, 2020, original scientific article Keywords: variable exponent spaces, regularity theory, maximum principle, concave and convex nonlinearities, positive solutions, comparison principles Full text (file, 650,13 KB) 
10. Multiplicity of solutions for a class of fractional ▫$p(x, \cdot)$▫Kirchhofftype problems without the AmbrosettiRabinowitz conditionMohamed Karim Hamdani, Jiabin Zuo, Nguyen Thanh Chung, Dušan Repovš, 2020, original scientific article Keywords: fractional ▫$p(x,\cdot)$▫Kirchhofftype problems, ▫$p(x,\cdot)$▫fractional Laplace operator, AmbrosettiRabinowitz type conditions, symmetric mountain pass theorem, Cerami compactness condition, fractional Sobolev spaces with variable exponent, multiplicity of solutions Full text (file, 483,22 KB) 