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Abstract. The study of fourth order partial differential equations has flourished in the last years, however, a p(·)-
biharmonic problem with no-flux boundary condition has never been considered before, not even for constant p. This is
an important step further, since surfaces that are impermeable to some contaminants are appearing quite often in nature,
hence the significance of such boundary condition. By relying on several variational arguments, we obtain the existence
and the multiplicity of weak solutions to our problem. We point out that, although we use a mountain pass type theorem
in order to establish the multiplicity result, we do not impose an Ambrosetti-Rabinowitz type condition, nor a symmetry
condition, on our nonlinearity f .
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1 Introduction

Fourth order PDEs have various applications, to micro-electro-mechanical systems, phase field models of multi-
phase systems, thin film theory, thin plate theory, surface diffusion on solids, interface dynamics, flow in Hele-Shaw
cells, see for example [17, 24, 38]. Therefore many authors focused on the study of such problems with constant
exponents, like Molica Bisci and Repovš [37], Candito and Molica Bisci [12], or Liu and Squassina [35] etc. At
the same time, many applications are generated by the elliptic problems with variable exponents, which have a
large range of applications, due to electrorheological fluids [13, 26, 27, 36, 40, 42, 43, 44, 45], thermorheological
fluids [3], elastic materials [49, 9], image restoration [14], mathematical biology [25], dielectric breakdown and
electrical resistivity [6], polycrystal plasticity [7] and sandpile growth [8]. At the interplay of these two research
directions, a natural interest goes to the p(·)-biharmonic problems. This trend is quite fresh, starting probably
in 2009, with the papers [5, 20], where the authors considered problems with the Navier boundary condition

u = ∆u = 0 on ∂Ω. (1)

The line of investigation was continued by several authors, see [1, 2, 4, 21, 34, 30, 31, 47]. Notice that all these
studies focus on problems with the Navier boundary condition (1) and only one of them, [21], also considers the
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Neumann type boundary condition

∂u

∂ν
=

∂

∂ν
(|∆u|p(x)−2∆u) = 0 on ∂Ω.

But if we think at the applicability to real-life situations, when the surfaces are impermeable to some contami-
nants, we are drawn to the no-flux boundary problems. Hence, inspired by the previous studies [10, 11], where
second order problems with no-flux boundary conditions are treated in the framework of the variable exponent
spaces, we propose the following problem.

∆(|∆u|p(x)−2∆u) + a(x)|u|p(x)−2u = λ f(x, u) for x ∈ Ω,

u ≡ constant, ∆u = 0 for x ∈ ∂Ω,∫
∂Ω

∂

∂ν
(|∆u|p(x)−2∆u) dS = 0,

(2)

where Ω ⊂ RN (N ≥ 2) is a bounded domain with sufficiently smooth boundary, λ > 0, and the exponent p is
log-Hölder continuous, that is, for each i ∈ {1, . . . , N} there exists c̄ > 0 such that

|p(x)− p(y)| ≤ c̄

− log |x− y|
for all x, y ∈ Ω, 0 < |x− y| ≤ 1

2
,

and
1 < ess inf

x∈Ω
p(x) ≤ ess sup

x∈Ω
p(x) <∞ for all x ∈ Ω.

For simplicity, we denote
h− = ess inf

x∈Ω
h(x) and h+ = ess sup

x∈Ω
h(x).

We will work under the following hypotheses:

(H1) a ∈ L∞(Ω) and there exists a0 > 0 such that a(x) ≥ a0 for all x ∈ Ω;

(H2) f : Ω× R→ R is a Carathéodory function and there exist t0 > 0 and a ball B with B ⊂ Ω such that∫
B

F (x, t0) dx > 0,

where F represents the antiderivative of f , that is, F (x, t) =
∫ t

0
f(x, s) ds;

(H3) lim
|t|→∞

f(x, t)

|t|p(x)−1
= 0 uniformly with respect to x ∈ Ω;

(H4) lim
|t|→0

f(x, t)

|t|p(x)−1
= 0 uniformly with respect to x ∈ Ω.

Note that all the necessary details regarding the definition and the properties of the variable exponent spaces
involved in the investigation of our problem will be provided in the next section. It is worth mentioning though,
that, since the class of problems represented by (2) was not introduced before, not even for the constant case, we
will need to introduce a new space on which is more appropriate to search for weak solutions to (2). Depending
on the values taken by λ, we establish an existence and a multiplicity result. For the existence result we rely on
a classical theorem from the field of calculus of variations, sometimes referred to as a Weierstrass-type theorem.
For the second solution, we make use of a mountain pass type theorem, without imposing the usual Ambrosetti-
Rabinowitz growth condition, that is, there exist θ > p+ and l > 0 such that

0 < θF (x, t) ≤ f(x, t)t for all |t| > l and a.e. x ∈Ω.
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The celebrated mountain pass theorem of Ambrosetti and Rabinowitz has provided lots of applications during
the years and represents the key ingredient to the weak solvability for numerous problems. However, for the
multiplicity of solutions, all the adaptations of the mountain pass theorem are relying on additional symmetry
conditions on the nonlinearity f :

f(x,−t) = −f(x, t) for a.e. x ∈ Ω and all t ∈ R (3)

with the help of which we can get the existence of an unbounded sequence of weak solutions. This was the case
for the fourth order PDEs with variable exponent treated by [1, 4, 5, 20, 34]. Other multiplicity results, which
do not impose condition (3) on the nonlinearity, were provided due to various three critical points theorems
of Ricceri type, see [2, 21]. Our problem is the first variable exponent problem of fourth order for which the
multiplicity of solutions is obtained by applying a different strategy. For second order problems with variable
exponents for which the same strategy is applied we refer to [10, 11, 28].

2 Some preliminaries

We introduce some notation that will clarify what follows. Thus, when we refer to a Banach space X, we denote
by X? its dual and by 〈·, ·〉 the duality pairing between X? and X. By | · | we denote the absolute value of a
number, or the Euclidean norm when it is defined on RN (N ≥ 2), respectively the Lebesgue measure, when it
is applied to a set.

We recall the definitions of the variable exponent Lebesgue and Sobolev spaces and some of their basic
properties, but much more details can be found in the comprehensive works [19, 16, 41]. As stated from the
beginning, everywhere below we consider p to be log-Hölder continuous with 1 < p− ≤ p+ <∞.

The Lebesgue space with variable exponent is defined by

Lp(·)(Ω) = {u : u is a measurable real–valued function such that

∫
Ω

|u(x)|p(x) dx <∞}.

This space is equipped with the Luxemburg norm,

‖u‖Lp(·)(Ω) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
,

and it is a separable and reflexive Banach space, see [32, Theorem 2.5, Corollary 2.7]. Also, we have the following
continuous embedding result.

Theorem 1. ([32, Theorem 2.8]) If 0 < |Ω| < ∞ and p1, p2 ∈ C(Ω;R), 1 ≤ p−i ≤ p+
i < ∞ (i = 1, 2), are such

that p1 ≤ p2 in Ω, then the embedding Lp2(·)(Ω) ↪→ Lp1(·)(Ω) is continuous.

The p(·)-modular of the Lp(·)(Ω) space is represented by ρp(·) : Lp(·)(Ω)→ R,

ρp(·)(u) =

∫
Ω

|u(x)|p(x) dx,

and we have some useful properties connecting this application to the Luxemburg norm, see for example [22,
Theorem 1.3, Theorem 1.4]. If u ∈ Lp(·)(Ω), then

‖u‖Lp(·)(Ω) < 1 (= 1; > 1) ⇔ ρp(·)(u) < 1 (= 1; > 1); (4)

‖u‖Lp(·)(Ω) > 1 ⇒ ‖u‖p
−

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ‖u‖p

+

Lp(·)(Ω)
; (5)

‖u‖Lp(·)(Ω) < 1 ⇒ ‖u‖p
+

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ‖u‖p

−

Lp(·)(Ω)
; (6)

‖u‖Lp(·)(Ω) → 0 (→∞) ⇔ ρp(·)(u)→ 0 (→∞). (7)
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If, in addition, (un)n ⊂ Lp(·)(Ω), then

lim
n→∞

‖un − u‖Lp(·)(Ω) = 0 ⇔ lim
n→∞

ρp(·)(un − u) = 0 ⇔

⇔ (un)n converges to u in measure and lim
n→∞

ρp(·)(un) = ρp(·)(u). (8)

In addition, we benefit from a Hölder type inequality:∣∣∣∣∫
Ω

u(x)v(x) dx

∣∣∣∣ ≤ 2 ‖u‖Lp(·)(Ω)‖v‖Lp′(·)(Ω), (9)

for all u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) (see [32, Theorem 2.1]), where we denoted by Lp
′(·)(Ω) the dual of Lp(·)(Ω),

obtained by conjugating the exponent pointwise, that is, 1/p(x) + 1/p′(x) = 1, see [32, Corollary 2.7].

Passing to the definition of the Sobolev space with variable exponent, W k,p(·)(Ω), we set

W k,p(·)(Ω) = {u ∈ Lp(·)(Ω) : Dαu ∈ Lp(·)(Ω), |α| ≤ k},

where Dαu = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂x

αN
N

u, with α = (α1, . . . , αN ) is a multi-index and |α| =
∑N
i=1 αi. The space W k,p(·)(Ω)

endowed with the norm
‖u‖Wk,p(x)(Ω) =

∑
|α|≤k

‖Dαu‖Lp(·)(Ω),

is a separable and reflexive Banach space too, see [32, Theorem 3.1].

The log-Hölder continuity of the exponent p plays a decisive role in the following density results.

Theorem 2. (see [18, Theorem 3.7] and [16, Section 6.5.3]) Assume that Ω ⊂ RN (N ≥ 2) is a bounded domain
with Lipschitz boundary and p is log-Hölder continuous with 1 < p− ≤ p+ < ∞. Then C∞(Ω) is dense in
W k,p(·)(Ω).

Notice that the functions from C0,µ(Ω) are log-Hölder continuous. Also, it is important to mention that
although the log-Hölder continuity of the exponent is a sufficient condition for the above density result, it is not
always necessary, see [16, 50].

Moreover, the following embedding theorem takes place.

Theorem 3. (see [22, Theorem 2.3] and [16, Section 6]) Let us consider q ∈ C(Ω;R) such that 1 < q− ≤ q+ <∞
and q(x) ≤ p∗k(x) for all x ∈ Ω, where

p∗k(x) =

{
Np(x)

N−kp(x) if kp(x) < N,

+∞ if kp(x) ≥ N

for any x ∈ Ω, k ≥ 1.
Then there is a continuous embedding

W k,p(·)(Ω) ↪→ Lq(·)(Ω).

If we replace ≤ with < the embedding is compact.

Let us denote by W
k,p(·)
0 (Ω) the closure of C∞0 (Ω) in W k,p(·)(Ω). In fact, we are interested in the properties of

the spaces W 2,p(·)(Ω), W
1,p(·)
0 (Ω) and W 2,p(·)(Ω)∩W 1,p(·)

0 (Ω). Due to the log-Hölder continuity of the exponent

p, the space W
1,p(·)
0 (Ω) coincides with

W
1,p(·)
0 (Ω) =

{
u ∈W 1,p(·)(Ω) : u = 0 on ∂Ω

}
,
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and it can be endowed with the norm

‖u‖
W

1,p(·)
0 (Ω)

= ‖∇u‖Lp(·)(Ω),

due to the following Poincaré type inequality (see [23, Proposition 2.3]):

‖u‖Lp(·)(Ω) ≤ C‖∇u‖Lp(·)(Ω) for all u ∈W 1,p(·)
0 (Ω), (10)

where C is a positive constant. The space
(
W

1,p(·)
0 (Ω), ‖ · ‖

W
1,p(·)
0 (Ω)

)
is a separable and reflexive Banach space

(see [23, Proposition 2.1]).

Obviously, the choice of the norms has a major influence on the development of the argumentation. Generally,
we know that if (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are Banach spaces, then (X ∩ Y, ‖ · ‖X∩Y ) is a Banach space too,
where ‖u‖X∩Y = ‖u‖X + ‖u‖Y . In our case, we have,

‖u‖
W 2,p(·)(Ω)∩W 1,p(·)

0 (Ω)
= ‖u‖W 2,p(·)(Ω) + ‖u‖

W
1,p(·)
0 (Ω)

= ‖u‖Lp(·)(Ω) + ‖∇u‖Lp(·)(Ω) +
∑
|α|=2

‖Dαu‖Lp(·)(Ω).

Furthermore,
(
W 2,p(·)(Ω) ∩W 1,p(·)

0 (Ω), ‖ · ‖
W 2,p(·)(Ω)∩W 1,p(·)

0 (Ω)

)
is a separable and reflexive Banach space. In

addition, we know that ‖·‖
W 2,p(·)(Ω)∩W 1,p(·)

0 (Ω)
and ‖∆(·)‖Lp(·)(Ω) are equivalent norms on W 2,p(·)(Ω)∩W 1,p(·)

0 (Ω),

see [48, Theorem 4.4]. However, taking into account the particularity of problem (2), which represents the subject
of our investigation, the following representation of the norm might be best:

‖u‖a = inf

{
µ > 0 :

∫
Ω

(∣∣∣∣∆u(x)

µ

∣∣∣∣p(x)

+ a(x)

∣∣∣∣u(x)

µ

∣∣∣∣p(x)
)
dx ≤ 1

}
(11)

for all u ∈ W 2,p(·)(Ω) or W 2,p(·)(Ω) ∩ W 1,p(·)
0 (Ω). The previously defined norm represents a norm on both

W 2,p(·)(Ω) or W 2,p(·)(Ω) ∩W 1,p(·)
0 (Ω) and it is equivalent to the usual norm defined here, see [21, Remark 2.1].

Moreover, the modular inequalities that were appropriate for the norm of the Lebesgue space, can be extended
to this situation, by proceeding similarly to [22, Theorems 1.2-1.3]. More precisely, for any a taken as in (H1),
we consider Λ : W 2,p(·)(Ω)→ R defined by

Λ(u) =

∫
Ω

[
|∆u|p(x) + a(x)|u|p(x)

]
dx. (12)

Let us fix u ∈W 2,p(·)(Ω)\{0}. It is trivial to see that Λ(µu) is even, and, for µ ∈ [0,∞), Λ(µu) increases strictly.
Also, let µn → µ. Since (µn)n is bounded, 1 < p− ≤ p+ < ∞ and a satisfies (H1), by Lebesgue’s Dominated
Convergence Theorem we deduce that Λ(µn u)→ Λ(µu), hence Λ(µu) is continuous.

Based on these properties of Λ, we have the following consequence.

Corollary 1. Let u ∈W 2,p(·)(Ω) \ {0}. Then ‖u‖a = |κ| if and only if Λ
(
u
κ

)
= 1.

Proof. Without loss of generality, we can suppose that κ > 0 because Λ(µu) is even.

To show the direct implication, we consider that ‖u‖a = κ. Note that Λ(0 ·u) = 0 and that, whenever µ→∞,
Λ(µu)→∞. Therefore the continuity of Λ(µu) ensures the existence of a µ0 ∈ (0,∞) with the property that

Λ

(
u

µ 0

)
= 1. (13)

By (11),

κ = inf

{
µ > 0 : Λ

(
u

µ

)
≤ 1

}
. (14)

5



Since, by (13), µ0 ∈
{
µ > 0 : Λ

(
u
µ

)
≤ 1
}

, relation (14) gives us

κ ≤ µ0. (15)

At the same time,

µ ≥ µ0 for all µ ∈ (0,∞) such that Λ

(
u

µ

)
≤ 1

because Λ
(
u
µ 0

)
= 1 and Λ(µu) increases strictly for µ ∈ [0,∞). The previous inequality indicates that µ0

represents a lower bound for the set
{
µ > 0 : Λ

(
u
µ

)
≤ 1
}

, thus, by (14),

κ ≥ µ0. (16)

Putting together (13), (15) and (16), we have obtained that ‖u‖a = κ implies Λ
(
u
κ

)
= 1.

For the reciprocal implication, let us assume that Λ
(
u
κ

)
= 1. By proceeding as above, we first notice that

κ ∈
{
µ > 0 : Λ

(
u
µ

)
≤ 1
}

, hence, by (11), κ ≥ ‖u‖a. Then, using again the monotonicity of Λ(µu) for µ > 0,

we deduce that µ0 represents a lower bound for the set
{
µ > 0 : Λ

(
u
µ

)
≤ 1
}

, so κ ≤ ‖u‖a and the conclusion

follows. �

Now we are able to prove the modular-type inequalities that we previously mentioned.

Proposition 1. For u, un ∈W 2,p(·)(Ω) we have

‖u‖a < (=;> 1)⇔ Λ(u) < (=;> 1), (17)

‖u‖a ≤ 1⇒ ‖u‖p
+

a ≤ Λ(u) ≤ ‖u‖p
−

a , (18)

‖u‖a ≥ 1⇒ ‖u‖p
−

a ≤ Λ(u) ≤ ‖u‖p
+

a , (19)

‖un‖a → 0 (→∞) ⇔ Λ(un)→ 0 (→∞). (20)

Proof. For ‖u‖a = 0, Λ(u) = 0 and there is nothing to prove, thus we focus on the situation when ‖u‖a 6= 0.
Let us denote ‖u‖a = κ. By Corollary 1 we have that Λ

(
u
κ

)
= 1.

If κ = 1, we immediately get that Λ(u) = 1. Using again Corollary 1 we easily notice that the vice-versa
holds too: if Λ(u) = 1, then ‖u‖a = 1.

If κ < 1, the definition (12) enables us to write

1

κp−
Λ(u) ≤ Λ

(u
κ

)
≤ 1

κp+
Λ(u).

Since Λ
(
u
κ

)
= 1, we arrive at

κp
+

≤ Λ(u) ≤ κp
−
< 1.

Similarly, if κ > 1,

1 < κp
−
≤ Λ(u) ≤ κp

+

,

so the direct implication of (17) is proved, together with relations (18) and (19). Actually, the reciprocal
implication of (17) is also true. Indeed, let us assume for example that Λ(u) < 1. Then it is clear that ‖u‖a < 1,
otherwise, if ‖u‖a ≥ 1, then, from what we have proved above, we get Λ(u) ≥ 1, which contradicts our initial
assumption. The case when Λ(u) > 1 is similar.

Passing to the proof of (20), if ‖un‖a → 0, then (18) implies

0 ≤ Λ(un) ≤ ‖un‖p
−

a → 0,
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while if ‖un‖a →∞, then (19) implies

Λ(un) ≥ ‖un‖p
−

a →∞.

Reciprocal, if Λ(un)→ 0, we use (17) and (18) to arrive at 0 ≤ ‖un‖a ≤ (Λ(un))
1/p+ → 0, while if Λ(un)→∞,

we use (17) and (19) to arrive at ‖un‖a ≥ (Λ(un))
1/p+ →∞. �

Since we are getting closer to our goal, that is, the discussion of problem (2), it is time to introduce the space
where we will search for weak solutions to our problem and to establish some of its main properties.

3 Weak solvability of the problem

When treating a problem with no-flux boundary condition, we need to choose a variable exponent space that
is more appropriate for our study than the ones presented in the previous section. Therefore we introduce the
following subspace of W 2,p(·)(Ω).

V =
{
u ∈W 2,p(·)(Ω) : u

∣∣
∂Ω
≡ constant

}
.

Notice that V can be viewed also as

V =
{
u+ c : u ∈W 2,p(·)(Ω) ∩W 1,p(·)

0 (Ω), c ∈ R
}

(21)

and we can prove the following result.

Theorem 4.
(
V, ‖ · ‖W 2,p(·)(Ω)

)
is a separable and reflexive Banach space.

Proof. Our goal is to prove that V is a closed subspace of the separable and reflexive Banach space(
W 2,p(·)(Ω), ‖ · ‖W 2,p(·)(Ω)

)
. Let (vn)n ⊂ V be such that it converges to v ∈ W 2,p(·)(Ω). In order to prove

our claim it is sufficient to show that v ∈ V .
Taking into account (21), we are aware of the fact that there exist (un)n ⊂ W 2,p(·)(Ω) ∩ W 1,p(·)

0 (Ω) and
(cn)n ⊂ R such that, for all n ∈ N,

vn = un + cn.

The equivalence of the norms ‖ · ‖
W 2,p(·)(Ω)∩W 1,p(·)

0 (Ω)
and ‖∆(·)‖Lp(·)(Ω) on W 2,p(·)(Ω)∩W 1,p(·)

0 (Ω) enables us to

write

‖un − um‖W 2,p(·)(Ω)∩W 1,p(·)
0 (Ω)

≤ c‖∆(un − um)‖Lp(·)(Ω) ≤ c
N∑
i=1

∥∥∥∥ ∂2

∂x2
i

(un + cn − um − cm)

∥∥∥∥
Lp(·)(Ω)

where c represents a generic positive constant that may vary along the calculus, as it is the case for the remaining
of our paper. Consequently,

‖un − um‖W 2,p(·)(Ω)∩W 1,p(·)
0 (Ω)

≤ c‖vn − vm‖W 2,p(·)(Ω). (22)

But (vn)n is converging to v in
(
W 2,p(·)(Ω), ‖ · ‖W 2,p(·)(Ω)

)
, hence it is a Cauchy sequence, and (22) implies that

(un)n is a Cauchy sequence in the Banach space
(
W 2,p(·)(Ω) ∩W 1,p(·)

0 (Ω), ‖ · ‖
W 2,p(·)(Ω)∩W 1,p(·)

0 (Ω)

)
. It follows

immediately that (un)n is converging to a function u ∈W 2,p(·)(Ω) ∩W 1,p(·)
0 (Ω).

On the other hand, we have the continuous embedding Lp(·)(Ω) ↪→ L1(Ω), so

‖cn − cm‖L1(Ω) ≤ c‖cn − cm‖Lp(·)(Ω) ≤ c‖vn − vm‖Lp(·)(Ω) + c‖um − un‖Lp(·)(Ω). (23)

Since both (vn)n and (un)n are Cauchy sequences in W 2,p(·)(Ω), respectively in W 2,p(·)(Ω) ∩W 1,p(·)
0 (Ω), by the

definition of the corresponding norms and by the boundedness of Ω, we infer that (cn)n is a Cauchy sequence in
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(R, | · |). Therefore (cn)n is converging to a c ∈ R and we have obtained that v = u+ c ∈ V, which completes our
proof. �

Now that we have established some basic properties of the space V , we are ready to introduce the definition
of a weak solution to our problem. To this purpose, we consider a smooth function u that verifies (2) and, by
applying Green’s formula, we get∫

Ω

|∆u|p(x)−2∆u∆v dx+

∫
∂Ω

∂

∂ν

(
|∆u|p(x)−2∆u

)
v dx−

∫
∂Ω

|∆u|p(x)−2∆u
∂v

∂ν
dx+

∫
Ω

a(x)|u|p(x)−2uv dx =

= λ

∫
Ω

f(x, u)v dx for all v ∈ C∞(Ω).

Taking into consideration the fact that V is a closed subspace of
(
W 2,p(·)(Ω), ‖ · ‖W 2,p(·)(Ω)

)
together with the

density result Theorem 2 and the boundary conditions, we arrive at the following formulation.

Definition 1. We say that u ∈ V is a weak solution of the boundary value problem (2) if and only if∫
Ω

|∆u|p(x)−2∆u∆v dx+

∫
Ω

a(x)|u|p(x)−2uv dx− λ
∫

Ω

f(x, u)v dx = 0 for all v ∈ V.

To be able to find a weak solution to (2), we rely on the critical point theory, thus to problem (2) we associate
the functional

I : V → R, I = I1 − λI2,

where

I1(u) =

∫
Ω

1

p(x)

[
|∆u|p(x) + a(x)|u|p(x)

]
dx and I2(u) =

∫
Ω

F (x, u) dx. (24)

By proceeding similarly to [21, Proposition 2.5], one can establish the following.

Proposition 2. Let I1 : V → R be the above defined functional.

(i) I1 is of class C1, with the Gâteaux derivative defined by

〈I ′1(u), v〉 =

∫
Ω

|∆u|p(x)−2∆u∆v dx+

∫
Ω

a(x)|u|p(x)−2uv dx.

(ii) I1 is (sequentially) weakly lower semicontinuous, that is, for any u ∈ V and any subsequence (un)n ⊂ V
such that un ⇀ u weakly in V , there holds

Φ(u) ≤ lim inf
n→∞

Φ(un).

(iii) I ′1 : V → V ∗ is of type (S+), that is, un ⇀ u and lim supn→∞ I ′1(un)(un − u) ≤ 0 imply that un → u.

Thus, due to the properties fulfilled by f , we can easily deduce that I is of class C1, with Gâteaux derivative
defined by

〈I ′(u), v〉 =

∫
Ω

|∆u|p(x)−2∆u∆v dx+

∫
Ω

a(x)|u|p(x)−2uv dx− λ
∫

Ω

f(x, u)v dx

so any critical point of I is a weak solution to (2). Therefore, in what follows we focus on studying the existence
and the multiplicity of the nontrivial critical points of I.
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4 The existence result

We base our first result on the classical theorem of calculus of variations:

Theorem 5. (see [15, Section 2, Theorem 1.2]) Assume that X is a reflexive Banach space of norm ‖ · ‖X and
the functional Φ : X → R is

(i) coercive on X, that is, Φ(u)→∞ as ‖u‖X →∞;

(ii) (sequentially) weakly lower semicontinuous on X.

Then Φ is bounded from below on X and attains its infimum in X.

By applying this result to the functional I, we prove the existence of a nontrivial weak solution.

Theorem 6. Let Ω ⊂ RN (N ≥ 2) be a bounded domain with smooth boundary and p be log-Hölder continuous
with 1 < p− ≤ p+ < ∞ for all x ∈ Ω. Assume hypotheses (H1)-(H3) take place. Then there exists a constant
λ0 > 0 such that problem (2) has at least one nontrivial weak solution in V for every λ > λ0.

Proof. Let us first deal with the coercivity of I. Hypothesis (H3) implies that, for all ε > 0, there exists
δε > 0 such that for all |t| > δε and all x ∈ Ω we have

|f(x, t)| ≤ ε|t|p
(x)−1.

For the moment, we arbitrarily fix ε > 0. Then the continuity of f in its second argument indicates that for all
t ∈ R and all x ∈ Ω there exists c0 > 0 such that

|f(x, t)| ≤ c0 + ε|t|p
(x)−1. (25)

Taking into account the definition of I (see (24)) and (25), we arrive at

I(u) ≥ 1

p+

∫
Ω

[
|∆u|p(x) + (a(x)− λε)|u|p(x)

]
dx− λ c0‖u‖L1(Ω).

Let us choose ε such that ε < a0/λ because in this way

ã = a− λε

verifies (H1). We know that V is endowed with the norm ‖ · ‖W 2,p(·)(Ω) which is equivalent to the norm ‖ · ‖ã
introduced by (11). Then for any u ∈ V with ‖u‖ã ≥ 1, inequality (19) leads to

I(u) ≥ 1

p+
‖u‖p

−

ã − λ c0‖u‖L1(Ω). (26)

At the same time, we have that 1 < p?2(x) for all x ∈ Ω, therefore by Theorem 3 and by (26) we deduce that
there exists c > 0 such that

I(u) ≥ 1

p+
‖u‖p

−

ã − λ c‖u‖ã,

hence I is coercive.

Moving further, to the weakly lower semicontinuity of I, we already know that I1 is weakly lower semicon-
tinuous, by Proposition 2. To investigate if this property holds for I2 too, we assume un ⇀ u in V . But V is a
closed subspace of W 2,p(·)(Ω) thus the compact embedding produced by Theorem 3 gives us

un → u in Lp
(·)(Ω) and un → u in L1(Ω). (27)

Using the mean value theorem,there exists v which takes values strictly between the values of u and un such
that

|I2(un)− I2(u)| ≤
∫

Ω

|F (x, un)− F (x, u)| dx ≤
∫

Ω

|un − u| sup
x∈Ω
|f(x, v(x)| dx,

9



hence, by (25) and (27) the functional I2 is weakly continuous, so I is weakly continuous also. Consequently, we
obtain the weakly lower semicontinuity of I.

Now we are in position to apply Theorem 5 and to find u1 ∈ V in which I attains its infimum, hence u1

represents a weak solution to problem (2). Furthermore, for all λ > 0,

I(u1) ≤ I(u) for all u ∈ V. (28)

Given the ball B provided by hypothesis (H2), we can take ε > 0 sufficiently small such that

Bε := {x ∈ Ω| dist(x, B) ≤ ε} ⊂ Ω.

Furthermore, we can construct the following C1
c function:

uε(x) :=

 t0, when x ∈ B,

0, when x ∈ Ω \Bε.

Then

I(uε) ≤ I1(uε)− λ
∫
B

F (x, t0) dx− λ
∫
Bε\B

F (x, uε) dx.

By the definition of F we are able to fix ε0 sufficiently small such that there exists a positive constant α0 with
the property that

I(uε0) ≤ I1(uε0)− λα0

∫
B

F (x, t0) dx.

Now, by taking

λ0 :=
I1(uε0)

α0

∫
B
F (x, t0) dx

> 0 (29)

we deduce that I(uε0) < 0 for all λ > λ0. By choosing u = uε0 in (28) we obtain that u1 is nontrivial for all
λ > λ0 because I(0) = 0, and we have completed our proof. �

5 The multiplicity result

For the multiplicity result of this paper we rely on a variant of the celebrated mountain pass theorem (see for
example [29, 33, 39]) of Ambrosetti and Rabinowitz.

Theorem 7. Let (X, ‖ · ‖X) be a Banach space. Assume that Φ ∈C1(X;R) satisfies the Palais-Smale condition,
that is, any sequence (un)n ⊂ X such that (Φ(un))n is bounded and Φ′(un) → 0 in X? as n → ∞, contains a
convergent subsequence. Also, assume that Φ has a mountain pass geometry, that is,

(i) there exist two constants τ > 0 and ρ ∈ R such that Φ(u) ≥ ρ if ‖u‖X = τ ;

(ii) Φ(0) < ρ and there exists e ∈ X such that ‖e‖X > τ and Φ(e) < ρ.

Then Φ has a critical point u0 ∈ X \ {0, e} with critical value

Φ(u0) = inf
γ∈P

sup
u∈γ

Φ(u) ≥ ρ > 0,

where P denotes the class of the paths γ ∈ C([0, 1];X) joining 0 to e.

Now we are able to prove the following.

Theorem 8. Let Ω ⊂ RN (N ≥ 2) be a bounded domain with smooth boundary and p be log-Hölder continuous
with 1 < p− ≤ p+ < ∞ for all x ∈ Ω. Assume hypotheses (H1)-(H4) take place. Then there exists λ0 > 0 such
that problem (2) has at least two nontrivial weak solutions in V for every λ > λ0.

10



Proof. By Theorem 6 we have already established that problem (2) has at least one nontrivial weak solution
u1 ∈ V for every λ > λ0, where λ0 is the one defined by (29). To deduce the existence of a second nontrivial
weak solution for problem (2), we will show that I satisfies the hypotheses of Theorem 7. We begin with the
Palais-Smale condition. Let us consider a sequence (un)n ⊂ V with the property that there exits M > 0 such
that

|I(un)| ≤M, and, when n→∞, I ′(un)→ 0 in V ∗. (30)

We recall that in the proof of Theorem 6 we have established the coercivity of I, so by (30) we infer that (un)n
is bounded. Moreover, V is a reflexive Banach space and a closed subspace of W 2,p(·)(Ω), thus there exists
u0 ∈ V ⊂W 2,p(·)(Ω) such that, passing eventually to a subsequence,

un ⇀ u0 in W 1,
→
p (·)(Ω). (31)

Applying again Theorem 3 we deduce that

un → u0 in L1(Ω), un → u0 in Lp
−

(Ω) and un → u0 in Lp(·)(Ω). (32)

All the above information was obtained starting from the boundedness of (I(un))n. By exploiting the second
part of relation (30) and the weak convergence from (31) we arrive at

lim
n→∞

|〈I ′(un), un − u0〉| = 0.

More exactly, we have

0 = lim
n→∞

∫
Ω

|∆un|p(x)−2 ∆un ∆(un − u0) dx

+ lim
n→∞

∫
Ω

a(x)|un|p(x)−2un(un − u0) dx (33)

− lim
n→∞

λ

∫
Ω

f(x, un)(un − u0) dx.

By (H1), (9), (32) and (8), we deduce that

lim
n→∞

∣∣∣∣∫
Ω

a(x)|un|p(x)−2un(un − u0) dx

∣∣∣∣ ≤ 2‖a‖L∞(Ω) lim
n→∞

(
‖|un|p(x)−1‖Lp′(·)(Ω)‖un − u0‖Lp(·)(Ω)

)
= 0. (34)

On the other hand, by (25), (9), (32) and (8), there exists c > 0 such that

lim
n→∞

∣∣∣∣∫
Ω

f(x, un)(un − u0)dx

∣∣∣∣ ≤ c0 lim
n→∞

‖un − u0‖L1(Ω) (35)

+c lim
n→∞

(
‖|un|p

−−1‖
L(p−)

′
(Ω)
‖un − u0‖Lp− (Ω)

)
= 0.

Replacing (34) and (35) in (33) we obtain

lim
n→∞

∫
Ω

|∆un|p(x)−2 ∆un ∆(un − u0) dx = 0,

so the weak convergence (31) and Proposition 2 imply that un → u0 in V as n → ∞. With this, we conclude
that I verifies the Palais-Smale condition. Let us show now that I has a mountain pass-type geometry too.

We can see immediately that

I1(u) ≥ 1

p+

∫
Ω

[
|∆u|p(x) + a(x)|u|p(x)

]
dx for all u ∈ V. (36)
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Passing to I2, we make use once again of (H3). For ε > 0 arbitrarily fixed, there exists δ1 ≥ 1 such that for all
|s| > δ1 and all x ∈ Ω,

|f(x, s)| ≤ ε|s|r−1

where p+ < r < p?2. At the same time, by (H4), there exists δ2 > 0 such that for all |s| < δ2 and all x ∈ Ω,

|f(x, s)| ≤ ε|s|p(x)−1.

Putting together the previous two inequalities and the continuity of f in its second argument, for a sufficiently
large constant c > 0,

I2(u) ≤ c ‖u‖rLr(Ω) +
ε

p−

∫
Ω

|u|p(x) dx for all u ∈ V. (37)

Combining (36) and (37) we get

I(u) ≤
(

1

p+
− λ ε

a0 p−

)∫
Ω

[
|∆u|p(x) + a(x)|u|p(x)

]
dx− λ c ‖u‖rLr(Ω) for all u ∈ V,

since a(x) ≥ a0 > 0 for all x ∈ Ω.
We arbitrarily take 0 < τ < 1. Then, due to the above inequality, for ‖u‖a = τ , relation (18) and Theorem 3

give us

I(u) ≥
(

1

p+
− λ ε

a0 p−

)
‖u‖p

+

a − λ c ‖u‖ra. (38)

We choose 0 < ε < a0 p
−/(λp+) and, since p+ < r, for τ = ‖u‖a < min{1, ‖u1‖a}, we can find ρ such that

I(u) ≥ ρ > 0 = I(0) > I(u1), where u1 is the first nontrivial weak solution found by Theorem 6. Therefore I has
a mountain pass-type geometry.

Now we can apply Theorem 7 to obtain a second nontrivial weak solution u2 ∈ V \{0, u1} to problem (2) and
our proof is complete. �
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