V disertaciji predstavimo nekaj novih rezultatov s področja korektnosti polinomske Lagrangeeve interpolacije nad trikotniki. Rezultati slonijo na pozitivnosti glavnih minorjev Bézierovih kolokacijskih matrik za neparametrične krpe. L. L. Schumaker je postavil naslednjo domnevo. Če izberemo enakomerno razporejene interpolacijske točke na trikotniku, potem so glavni minorji pripadajoče kolokacijske matrike pozitivni. V disertaciji pokažemo, da trditev velja za vse glavne minorje, če je totalna stopnja polinomov ▫$\le 17$▫, in za nekatere posebne razporeditve interpolacijskih točk. Omenjeno domnevo razširimo s postavitvijo natančne spodnje meje za vrednosti glavnih minorjev. Na koncu analiziramo korektnost interpolacijskega problema za splošnejšo lego točk in totalno stopnjo ▫$\le 4$▫. V parametričnem okolju predstavimo dve novi shemi, ki rešita Hermiteov interpolacijski problem (interpolacija točk in tangentnih ravnin). V prvi podrobno analiziramo konstrukcijo primernih robnih krivulj kubične trikotne krpe. Optimalne krivulje minimizirajo funkcional približne napetostne energije. Krivulje so regularne in brez zank ter osti. Kakovost krivulje študiramo v odvisnosti od danega parametra oblike. Preostale parametre kubičnega zlepka določimo tako, da imajo krpe majhno Willmorejevo energijo. Enolična rešitev interpolacijskega problema obstaja pri šibkih predpostavkah. Drugo shemo dobimo s posplošitvijo makro-elementov na parametričen primer. Podrobneje predstavimo dva tipa parametričnih ▫$C^1$▫ makro-elementov na triangulacijah, ki rešita Hermiteov interpolacijski problem. Kubični trikotni zlepki interpolirajo točke in pripadajoče tangentne ravnine v vozliščih triangulacije ter aproksimirajo tangentne ravnine na sredini povezav triangulacije. Zlepki stopnje pet v vozliščih dodatno interpolirajo forme normalnih ukrivljenosti. Kontrolne točke zlepkov konstruiramo v dveh korakih. V prvem, enakomerno razporejene kontrolne točke linearnega interpolanta projiciramo na interpolacijske ravnine. Da zadostimo pogojem gladkosti med trikotnimi krpami, popravke kontrolnih točk izračunamo kot rešitev po metodi najmanjših kvadratov. Interpolacijski shemi posedujeta veliko zaželenih lastnosti iz funkcijskega primera kot so lokalna in geometrijska konstrukcija ter linearna časovna zahtevnost. Na koncu interpolacijski shemi testiramo na različnih numeričnih primerih in v praktičnih aplikacijah.
|