Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Invariantni podprostori linearnih operatorjev nad R
ID
Polc, Katarina
(
Author
),
ID
Malnič, Aleksander
(
Mentor
)
More about this mentor...
URL - Presentation file, Visit
http://pefprints.pef.uni-lj.si/4701/
Image galllery
Abstract
V nalogi ločimo operatorje, ki s svojim delovanjem na vektorski prostor porodijo razpad prostora na premo vsoto samih, za izbrani operator minimalnih invariantnih podprostorov. Takšne operatorje imenujemo povsem reducibilni. V delu definiramo invariantne podprostore. Inducirane operatorje, ki delujejo nad njimi, preučimo vsaj do te mere, da lahko vpeljemo lastne ter korenske podprostore, za tem pa presodimo, v kakšnih primerih sta ta dva enaka in kakšne so posledice tega. S tem ločimo operatorje, ki porodijo razpad prostora na same enorazsežne, za dani operator invariantne podprostore, ter operatorje, katerih razpad prostora, na katere delujejo, ni tak. Ob tem vpeljemo vse potrebno orodje za opis takega razcepa.
Language:
Slovenian
Keywords:
linearni operator
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
PEF - Faculty of Education
Year:
2017
PID:
20.500.12556/RUL-95576
COBISS.SI-ID:
11718473
Publication date in RUL:
21.09.2017
Views:
1424
Downloads:
251
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Invariant subspaces of linear operators over R
Abstract:
In the thesis, we separate operators which have an effect on a vector space in such a way that they cause a decomposition of that space into a direct sum of minimal invariant subspaces. These kinds of operators are completely reducible. Invariant subspaces are then defined. We define induced operators that affect them to such extent that we can introduce their eigenspaces and root subspaces (generalized eigenspaces) and judge in which cases these are the same and what the consequences of that fact are. By using this procedure, we can separate the operators on those which cause a decomposition of space on only one-dimensional invariant subspaces and on those of which the decomposition of the space they affect on is different. The end result of this thesis is a treatment of the tool used to describe that kind of decomposition.
Keywords:
linear operator
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back