izpis_h1_title_alt

Invariantni podprostori linearnih operatorjev nad R
ID Polc, Katarina (Author), ID Malnič, Aleksander (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/4701/ This link opens in a new window

Abstract
V nalogi ločimo operatorje, ki s svojim delovanjem na vektorski prostor porodijo razpad prostora na premo vsoto samih, za izbrani operator minimalnih invariantnih podprostorov. Takšne operatorje imenujemo povsem reducibilni. V delu definiramo invariantne podprostore. Inducirane operatorje, ki delujejo nad njimi, preučimo vsaj do te mere, da lahko vpeljemo lastne ter korenske podprostore, za tem pa presodimo, v kakšnih primerih sta ta dva enaka in kakšne so posledice tega. S tem ločimo operatorje, ki porodijo razpad prostora na same enorazsežne, za dani operator invariantne podprostore, ter operatorje, katerih razpad prostora, na katere delujejo, ni tak. Ob tem vpeljemo vse potrebno orodje za opis takega razcepa.

Language:Slovenian
Keywords:linearni operator
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Year:2017
PID:20.500.12556/RUL-95576 This link opens in a new window
COBISS.SI-ID:11718473 This link opens in a new window
Publication date in RUL:21.09.2017
Views:1423
Downloads:251
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Invariant subspaces of linear operators over R
Abstract:
In the thesis, we separate operators which have an effect on a vector space in such a way that they cause a decomposition of that space into a direct sum of minimal invariant subspaces. These kinds of operators are completely reducible. Invariant subspaces are then defined. We define induced operators that affect them to such extent that we can introduce their eigenspaces and root subspaces (generalized eigenspaces) and judge in which cases these are the same and what the consequences of that fact are. By using this procedure, we can separate the operators on those which cause a decomposition of space on only one-dimensional invariant subspaces and on those of which the decomposition of the space they affect on is different. The end result of this thesis is a treatment of the tool used to describe that kind of decomposition.

Keywords:linear operator

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back