Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Globalni izreki o sklenjenosti krivulj : diplomsko delo
ID
Špringer, Tina
(
Author
),
ID
Slapar, Marko
(
Mentor
)
More about this mentor...
URL - Presentation file, Visit
http://pefprints.pef.uni-lj.si/id/eprint/4661
Image galllery
Abstract
V prvem delu diplomske naloge najprej predstavimo osnovne definicije in lastnosti krivulj v prostoru, to je krivulj, ki ležijo v R3. Definiramo ločno dolžino in ukrivljenost. V nadaljevanju dokažemo nekaj globalnih izrekov o ukrivljenosti krivulj. Prvi izrek poveže ukrivljenost in skladnost krivulj. Fenchelov izrek nam pove, koliko se mora prostorska krivulja ukrivljati, da postane sklenjena, medtem ko nam Fary-Milnorjev izrek pove, koliko se mora prostorska krivulja vsaj še dodatno ukrivljati, da postane zavozlana. V zadnjem delu diplomske naloge pa zaključimo z ukrivljenostjo ravninskih krivulj, to je krivulj, ki ležijo v R2.
Language:
Slovenian
Keywords:
ukrivljenost krivulj v R3
,
skladnost krivulj
,
Fenchelov izrek
,
Fary-Milnorjev izrek
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
PEF - Faculty of Education
Publisher:
[T. Špringer]
Year:
2017
Number of pages:
IV, 22 str.
PID:
20.500.12556/RUL-95172
UDC:
51(043.2)
COBISS.SI-ID:
11699785
Publication date in RUL:
19.09.2017
Views:
1284
Downloads:
316
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Global theorems of closed curves
Abstract:
In this diploma thesis we first present basic definitions and properties of space curves, that is curves in R3. We define the length and local curvatures of space curves. Next we prove some global theorems concerning the curvatures. The first theorem connects congruence and curvatures of a space curves. Fenchel's theorem shows the lower estimate on total curvature of a closed curve while Frey-Milnor's theorem shows that a knotted curve must have an even larger total curvature. We conclude by discussing total curvature of plane curves.
Keywords:
mathematics
,
matematika
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back